Bacteria Getting into Shape: Genetic Determinants of Morphology.

mBio

Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada

Published: March 2017

Perturbation of cellular processes is a prevailing approach to understanding biology. To better understand the complicated biology that defines bacterial shape, a sensitive, high-content platform was developed to detect multiple morphological defect phenotypes using microscopy. We examined morphological phenotypes across the K-12 deletion (Keio) collection at the mid-exponential growth phase, revealing 111 deletions perturbing shape. Interestingly, 64% of these were uncharacterized mutants, illustrating the complex nature of shape maintenance and regulation in bacteria. To understand the roles these genes play in defining morphology, 53 mutants with knockouts resulting in abnormal cell shape were crossed with the Keio collection in high throughput, generating 1,373 synthetic lethal interactions across 1.7 million double deletion mutants. This analysis yielded a highly populated interaction network spanning and linking multiple phenotypes, with a preponderance of interactions involved in transport, oxidation-reduction, and metabolic processes. Genetic perturbations of cellular functions are a prevailing approach to understanding cell systems, which are increasingly being practiced in very high throughput. Here, we report a high-content microscopy platform tailored to bacteria, which probes the impact of genetic mutation on cell morphology. This has particular utility in revealing elusive and subtle morphological phenotypes associated with blocks in nonessential cellular functions. We report 111 nonessential mutations impacting morphology, with nearly half of those genes being poorly annotated or uncharacterized. Further, these genes appear to be tightly linked to transport or redox processes within the cell. The screening platform is simple and low cost and is broadly applicable to any bacterial genomic library or chemical collection. Indeed, this is a powerful tool in understanding the biology behind bacterial shape.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5340871PMC
http://dx.doi.org/10.1128/mBio.01977-16DOI Listing

Publication Analysis

Top Keywords

prevailing approach
8
approach understanding
8
understanding biology
8
bacterial shape
8
morphological phenotypes
8
keio collection
8
high throughput
8
cellular functions
8
shape
5
bacteria shape
4

Similar Publications

A Review on Face Mask Recognition.

Sensors (Basel)

January 2025

School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

This review offers a comprehensive and in-depth analysis of face mask detection and recognition technologies, emphasizing their critical role in both public health and technological advancements. Existing detection methods are systematically categorized into three primary classes: feaRture-extraction-and-classification-based approaches, object-detection-models-based methods and multi-sensor-fusion-based methods. Through a detailed comparison, their respective workflows, strengths, limitations, and applicability across different contexts are examined.

View Article and Find Full Text PDF

Efficient Multi-Task Training with Adaptive Feature Alignment for Universal Image Segmentation.

Sensors (Basel)

January 2025

Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.

Universal image segmentation aims to handle all segmentation tasks within a single model architecture and ideally requires only one training phase. To achieve task-conditioned joint training, a task token needs to be used in the multi-task training to condition the model for specific tasks. Existing approaches generate the task token from a text input (e.

View Article and Find Full Text PDF

Heterocyclic chemistry gathered a wide audience due to their presence in potential drug candidates and being attractive synthons initiating several retro-syntheses the organic as well as in medicinal chemistry fields. Among them, azetidinones have been a subject of discussion due to their serendipity, curiosity, versatility by Penicillin and Cephalosporins as β-lactam antibiotics. Despite possessing a large margin of biological activities, azetidinones mainly work as antimicrobial, interfering with bacterial cell-wall synthesis blocking transpeptidase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!