Objective: The aim of the study wasto fabricate curcumin-loaded PLGA-PEG-Fe3O4 nanoparticles and comprise the effects of pure curcumin and curcumin-nanomagnetic encapsulated in PLGA-PEG on cell cytotoxicity and hTERT gene expression in A549 lung cancer cell line.
Background: Lung cancer is the most common cancer in men and one of the four main cancers that occurs in women. Telomerase is active in more than 85% of various cancerous cells such as lung cancer while its activity is very low in normal cells. Strong evidences of antitumor effects of curcumin; such as the activation of apoptosis, inhibition of angiogenesis and prevention of metastasis, have been confirmed. However, extensive clinical application of this relatively efficacious agent in cancer therapy has been limited because of poor aqueous solubility, and consequently, minimal systemic bioavailability. Nanoparticle-based targeted drug delivery approach has the potential for rendering curcumin specifically at the favorite site using an external magnetic field. It can also improve availability and circumvent the pitfalls of poor solubility.
Methods: Curcumin and Fe3O4 were encapsulated inside the PLGA-PEG co-polymer. Then, the curcumin loaded PLGA-PEG-Fe3O4 nanoparticles were characterized using SEM, FTIR and VSM. In the next step, the cytotoxic effect of different concentrations (0-120 µM) of free curcumin and equivalent doses of curcumin-loaded PLGA-PEG-Fe3O4 was assessed using MTT assay at 24-72 hours. Also, gene expression levels of hTERT were measured through Realtime PCR.
Results: By encapsulation of curcumin-Fe3O4, cytotoxicity of the drug substantially increased for all concentrations. IC50 of pure curcumin and nano-encapsulated curcumin during 24, 48 and 72 hours was obtained as 50.5, 49.1 and 48.3 µM and 23.7, 13.6 and 7.3 µM, respectively. Moreover, nano-encapsulated curcumin showed time-dependent cytotoxic effect on A549 cell line during 24, 48, 72 hours in comparison to pure curcumin. In addition, the expression level of the hTERT was reduced with increasing concentrations in both pure and nano-encapsulated curcumin. Compared to pure form, nano-encapsulated curcumin caused further decline in the expression levels of the gene.
Conclusion: Curcumin incorporating with Fe3O4 loaded into PLGA-PEG co-polymer, as an effective targeted carrier, can make a promising horizon in targeted lung cancer therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520617666170213115756 | DOI Listing |
J Cardiothorac Surg
January 2025
Thoracic Surgery Unit, Careggi University Hospital, Largo Brambilla, 1, 50134, Florence, Italy.
Background: Lung cancer is the first cause of cancer-related death. Awake lung resection is a new frontier of the concept of minimally invasive surgery. Our purpose is to demonstrate the feasibility of this technique for lobar and sublobar lung resection in NSCLC patients.
View Article and Find Full Text PDFBackground: Metabolic pathways are known to significantly impact the development and advancement of lung cancer. This study sought to establish a signature related to butyrate metabolism that is specifically linked to lung adenocarcinoma (LUAD).
Methods: For the purpose of identifying butyrate metabolism-related differentially expressed genes (BMR-DEGs) in the TCGA-LUAD dataset, we introduced transcriptome data.
Discov Oncol
January 2025
Spinal Surgery Department, the Fourth People's Hospital of Jinan, No.50 Normal Road, Tianqiao District, Jinan, 250031, Shandong, China.
Background: It is known that genomic instability contributes to cancer development. Mitotically associated long non-coding RNA (MANCR) has been reported to promote genomic stability, suggesting its involvement in cancers. Therefore, this study was conducted to investigate the role of MANCR in non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFDiscov Oncol
January 2025
The School Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
The prognosis and treatment efficacy of lung adenocarcinoma (LUAD), a disease with a high incidence, remains unsatisfactory. Identifying new biomarkers and therapeutic targets for LUAD is essential. Chromosomal assembly factor 1B (CHAF1B), a p60 component of the CAF-1 complex, is closely linked to tumor incidence and cell proliferation.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Respiratory Department, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua, 310053, Zhejiang, China.
Background: Plasma proteins contribute to the identification, diagnosis, and prognosis of human illnesses, which may be conducive to understanding the molecular mechanism and diagnosis of Lung adenocarcinoma (LUAD).
Methods: We collected plasma samples from 28 healthy individuals (H) and 56 LUAD patients and analyzed them using LC-MS/MS-based proteomics to determine differential expression plasma proteins (DEPPs). Then, the DEPPs were subjected to a two-sample Mendelian randomization (MR) study based on an "Inverse variance weighted (IVW)" approach to investigate the causal relationships between DEPPs and LUAD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!