A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hip joint geometry effects on cartilage contact stresses during a gait cycle. | LitMetric

The cartilage surface geometry of natural human hip joint is commonly regarded as sphere. It has been widely applied in computational simulation and hip joint prosthesis design. Some new geometry models have been developed and the sphere assumption has been questioned recently. The objective of this study was to analyze joint geometry effects on cartilage contact stress distribution and investigate contact patterns during a whole gait cycle. Hip surface was reconstructed from CT data of a healthy volunteer. Three finite element (FE) models of hip joint were developed from different cartilage geometries: natural geometry, sphere and rotational ellipsoid. Loads at ten instants of gait cycle were applied to these models based on published in-vivo data. FE predictions of peak contact pressure during gait of natural hip were compared with sphere and rotational ellipsoid replaced hip joint. Contact occurs mainly in upper anterior region of both acetabulum and femur distributing along sagittal plane of human body. It moves towards inferolateral aspect as the resultant joint reaction force changes during walking for natural hip. Peak pressures at the instant with maximum contact force were 7.48 MPa, 14.97 MPa and 13.12 MPa for models with natural hip surface, sphere replaced and rotational ellipsoid replaced surface respectively. During the whole gait cycle, contact pressure of natural hip ranked lowest in most of the instants, followed by rotational ellipsoid replaced and sphere replaced hip. The results indicate that rotational ellipsoid is more consistent with natural hip cartilage geometry than sphere during normal walking. This means rotational ellipsoid prosthesis could give a better description of physiological structure compared with standard sphere prosthesis. Therefore, rotational ellipsoid would be a better choice for prosthesis design.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2016.7592105DOI Listing

Publication Analysis

Top Keywords

rotational ellipsoid
28
hip joint
20
natural hip
20
gait cycle
16
hip
12
ellipsoid replaced
12
joint geometry
8
geometry effects
8
effects cartilage
8
cartilage contact
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!