We highlight recent progress in the development of high-fidelity numerical and physical breast phantoms. These phantoms mimic the anatomical structure and physical properties that are relevant to accurately portraying microwave interactions with the human breast. The phantoms are currently being used in numerous laboratory studies of microwave diagnostic and therapeutic technologies for a variety of potential clinical applications in breast health and disease management.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2016.7592100DOI Listing

Publication Analysis

Top Keywords

breast phantoms
12
human breast
8
microwave diagnostic
8
diagnostic therapeutic
8
therapeutic technologies
8
development application
4
application human
4
breast
4
phantoms
4
phantoms microwave
4

Similar Publications

Breast cancer is the most commonly diagnosed neoplasm and one of the most widespread cancers among women. The research advanced the Mf-EIT hardware through analogue discovery, component assessment, hardware integration, software creation, and data reconstruction utilizing Gauss-Newton and GREIT approaches. The breast cancer phantom consisted of a gelatin and sodium chloride solution.

View Article and Find Full Text PDF

Examining the influence of digital phantom models in virtual imaging trials for tomographic breast imaging.

J Med Imaging (Bellingham)

January 2025

University of Houston, Department of Biomedical Engineering, Houston, Texas, United States.

Purpose: Digital phantoms are one of the key components of virtual imaging trials (VITs) that aim to assess and optimize new medical imaging systems and algorithms. However, these phantoms vary in their voxel resolution, appearance, and structural details. We investigate whether and how variations between digital phantoms influence system optimization with digital breast tomosynthesis (DBT) as a chosen modality.

View Article and Find Full Text PDF

Objectives: We investigated image quality and standardized uptake values (SUVs) for different lesion sizes using clinical data generated by F-FDG-prone breast silicon photomultiplier (SiPM)-based positron emission tomography/computed tomography (PET/CT).

Methods: We evaluated the effect of point-spread function (PSF) modeling and Gaussian filtering (Gau) and determined the optimal reconstruction conditions. We compared the signal-to-noise ratio (SNR), contrast, %coefficient of variation (%CV), SUV, and Likert scale score between ordered-subset expectation maximization (OSEM) time-of-flight (TOF) and OSEM+TOF+PSF in phantom and clinical studies.

View Article and Find Full Text PDF

Background: This study investigates a multi-angle acquisition method aimed at improving image quality in organ-targeted PET detectors with planar detector heads. Organ-targeted PET technologies have emerged to address limitations of conventional whole-body PET/CT systems, such as restricted axial field-of-view (AFOV), limited spatial resolution, and high radiation exposure associated with PET procedures. The AFOV in organ-targeted PET can be adjusted to the organ of interest, minimizing unwanted signals from other parts of the body, thus improving signal collection efficiency and reducing the dose of administered radiotracer.

View Article and Find Full Text PDF

This study presented a novel approach for the precise ablation of breast tumors using focused ultrasound (FUS), leveraging a physics-informed neural network (PINN) integrated with a realistic breast model. FUS has shown significant promise in treating breast tumors by effectively targeting and ablating cancerous tissue. This technique employs concentrated ultrasonic waves to generate intense heat, effectively destroying cancerous tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!