A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adaptive decoding using local field potentials in a brain-machine interface. | LitMetric

Brain-machine interface (BMI) systems have the potential to restore function to people who suffer from paralysis due to a spinal cord injury. However, in order to achieve long-term use, BMI systems have to overcome two challenges - signal degeneration over time, and non-stationarity of signals. Effects of loss in spike signals over time can be mitigated by using local field potential (LFP) signals for decoding, and a solution to address the signal non-stationarity is to use adaptive methods for periodic recalibration of the decoding model. We implemented a BMI system in a nonhuman primate model that allows brain-controlled movement of a robotic platform. Using this system, we showed that LFP signals alone can be used for decoding in a closed-loop brain-controlled BMI. Further, we performed offline analysis to assess the potential implementation of an adaptive decoding method that does not presume knowledge of the target location. Our results show that with periodic signal and channel selection adaptation, decoding accuracy using LFP alone can be improved by between 5-50%. These results demonstrate the feasibility of implementing unsupervised adaptive methods during asynchronous decoding of LFP signals for long-term usage in a BMI system.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2016.7592026DOI Listing

Publication Analysis

Top Keywords

lfp signals
12
adaptive decoding
8
local field
8
brain-machine interface
8
bmi systems
8
signals decoding
8
adaptive methods
8
bmi system
8
decoding
6
bmi
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!