A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A feasibility study of depth image based intent recognition for lower limb prostheses. | LitMetric

This paper presents our preliminary work on a depth camera based intent recognition system intended for future use in robotic prosthetic legs. The approach infers the activity mode of the subject for standing, walking, running, stair ascent and stair descent modes only using data from the depth camera. Depth difference images are also used to increase the performance of the approach by discriminating between static and dynamic instances. After confidence map based filtering, simple features such as mean, maximum, minimum and standard deviation are extracted from rectangular regions of the frames. A support vector machine with a cubic kernel is used for the classification task. The classification results are post-processed by a voting filter to increase the robustness of activity mode recognition. Experiments conducted with a healthy subject donning the depth camera to his lower leg showed the efficacy of the approach. Specifically, the depth camera based recognition system was able to identify 28 activity mode transitions successfully. The only case of incorrect mode switching was an intended run to stand transition, where an intermediate transition from run to walk was recognized before transitioning to the intended standing mode.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2016.7591863DOI Listing

Publication Analysis

Top Keywords

depth camera
16
activity mode
12
based intent
8
intent recognition
8
camera based
8
recognition system
8
depth
6
mode
5
feasibility study
4
study depth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!