Rehabilitation under water is a viable physical rehabilitation option, but it has some limitations in terms of adapting to needs of each patient. In addition, its facility requirements are relatively high. Simulating the fluid environment using a robotic system would enable therapists adjust various parameters so that the therapy is tailored to the patient's unique state. Also, using a robotic system instead might be less costly and easily reachable. In this study, human lower extremity movement in fluids is modeled. This model is verified by comparing computer simulations with the results of previous experimental studies. Then, the model is used to create a control scheme which is implemented on a robotic gait trainer. Output torques are measured to check the effectiveness of the controller in simulating the fluid environment while compensating for weight and friction of the robotic system. Measurements showed that the desired joint torques were achieved and the controller was able to make the orthosis transparent to the patient. A hip extension exercise used in aquatic therapy was performed with the robotic system while varying drag coefficient, fluid density and flow velocity, and the data collected is presented.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2016.7591854DOI Listing

Publication Analysis

Top Keywords

robotic system
16
fluid environment
12
environment robotic
8
human lower
8
lower extremity
8
simulating fluid
8
robotic
6
simulation fluid
4
robotic orthosis
4
orthosis human
4

Similar Publications

This paper studies the practical prescribed-time control problem for dual-arm robots handling an object with output constraints. Firstly, by utilizing the property that the sum of internal forces in the grasping space is zero, the system model is obtained and decomposed into the contact force model and free motion model, which are orthogonal to each other. Furthermore, by combining the performance function and constraint function, the original system tracking error is transformed to a new one, whose boundedness can ensure that the original system variable converges to the predetermined range within the specified time.

View Article and Find Full Text PDF

Background: Precise and accurate glenoid preparation is important for the success of shoulder arthroplasty. Despite advancements in preoperative planning software and enabling technologies, most surgeons execute the procedure manually. Patient-specific instrumentation (PSI) facilitates accurate glenoid guide pin placement for cannulated reaming; however, few commercially available systems offer depth of reaming control.

View Article and Find Full Text PDF

Is the Coronal Plane Alignment of the Knee (CPAK) Classification Useful to Plan Individualized Total Knee Arthroplasty Surgery for the Spanish Population? A Critical Analysis of the CPAK Classification.

Rev Esp Cir Ortop Traumatol

January 2025

Knee Surgery Unit, iMove Traumatology, Barcelona, Spain; Knee Surgery Unit, Orthopaedic Surgery Department, Hospital Sant Joan de Déu de Manresa - Fundació Althaia, Universitat de Vic, Manresa, Spain.

Introduction: The CPAK classification aims to categorize knee phenotypes. The original study was based on Australian and Belgian population, but significant variation in CPAK distribution exists between different geographic areas. The primary objective is to evaluate knee phenotypes of osteoarthritic Spanish population based on the CPAK system.

View Article and Find Full Text PDF

As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.

View Article and Find Full Text PDF

Purpose: The adoption of robotic-assisted total hip arthroplasty (THA) is increasingly widespread, yet its influence on outcomes in outpatient surgery remains uncertain. This study aimed to evaluate whether robotic assistance reduces the rate of 90-day postoperative events in patients undergoing outpatient THA, compared to those in inpatient procedures.

Methods: This historical-prospective cohort study analyzed 706 primary THA cases performed between January 2017 and January 2023 by three senior surgeons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!