This report describes the development of a force platform based on instrumented load cells with built-in conditioning circuit and strain gages to measure and acquire the components of the force that is applied to the bike crank arm during pedaling in real conditions, and save them on a SD Card. To accomplish that, a complete new crank arm 3D solid model was developed in the SolidWorks, with dimensions equivalent to a commercial crank set and compatible with a conventional road bike, but with a compartment to support all the electronics necessary to measure 3 components of the force applied to the pedal during pedaling. After that, a 6082 T6 Aluminum Crankset based on the solid model was made and instrumented with three Wheatstone bridges each. The signals were conditioned on a printed circuit board, made on SMD technology, and acquired using a microcontroller with a DAC. Static deformation analysis showed a linearity error below 0.6% for all six channels. Dynamic analysis showed a natural frequency above 136Hz. A one-factor experiment design was performed with 5 amateur cyclists. ANOVA showed that the cyclist weight causes significant variation on the force applied to the bicycle pedal and its bilateral symmetry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2016.7591113 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
October 2024
Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care, Changsha 410008.
Objectives: Maxillary transverse deficiency is a common malocclusion frequently observed in orthodontic clinics. Miniscrew-assisted rapid palatal expansion (MARPE) not only produces greater skeletal expansion but also offers advantages such as simple miniscrew implantation without flap elevation, enhanced patient comfort, and an expanded age range and indications for palatal expansion. However, the fixed connection between the expander and the miniscrews makes the expander difficult to remove, significantly hindering its clinical application.
View Article and Find Full Text PDFInt J Pharm
March 2025
Bioinformatics Center of AMMS, Beijing, People's Republic of China. Electronic address:
Traditional mRNA vaccine formulation loaded by lipid nanoparticle (mRNA-LNP) has several shortcomings in clinical application, including the need for cryopreservation, discomfort associated with intramuscular injections, and the risk of liver aggregation. Dissolvable microneedles (DMNs), as a novel transdermal drug delivery platform, can overcome the skin barrier to deliver drugs directly into the skin in a minimally invasive manner. However, mRNA-LNP is unstable and easily degraded during the solidification of DMN.
View Article and Find Full Text PDFInt J Pharm
March 2025
Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
The utilization of dissolvable microneedles (MNs) is a promising and cutting-edge approach to drug delivery for the treatment of psoriasis, an autoimmune skin disorder characterized by the appearance of red, scaly patches on the skin. This study presents the development of a dissolving MN patch made of polyvinylpyrrolidone for the purpose of delivering Clobetasol 17-Propionate through the skin. The MN patches were evaluated for their physical characteristics, including morphology, solubility, strength, and ability to penetrate the skin.
View Article and Find Full Text PDFClin Biomech (Bristol)
March 2025
Department of Orthopedics, Balgrist University Hospital, University of Zürich, Forchstrasse 340, 8008 Zurich, Switzerland.
Background: The purpose of the present study was to investigate the effects of an experimentally induced weakness of the gluteal muscles on joint kinematics, reactions forces, and dynamic balance performance using the center of mass during stair climbing.
Methods: Ten healthy adult volunteers received sequential blocks of superior gluteal nerve to tensor fascia lata, superior, and inferior gluteal nerve on their dominant right leg. A full-body movement analysis during stair climbing was performed.
Tissue Cell
March 2025
Department of Orthodontics, Tai 'an Stomatological Hospital, No.261, Lingshan Street, Taishan District, Tai 'an, Shandong 271000, China.
Orthodontics promotes tooth movement and periodontal reconstruction by regulating osteogenic differentiation and osteoclast resorption. This study aimed to investigate the effect of orthodontic force during orthodontics on osteogenesis of periodontal ligament stem cells (PDLSCs) and the underlying mechanism. Cyclic mechanical stress was applied on PDLSCs, and osteogenic differentiation was analyzed using quantitative real-time polymerase chain reaction, immunoblotting, alkaline phosphatase (ALP) staining, and ALP activity determination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!