Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Transcranial electrical stimulation (tES) can be optimized to achieve maximal current flow at desired brain regions. The aim of this study was to characterize electric field magnitudes generated by tES optimization and to compare them to experimentally induced values as determined by data from intracranial electrodes. Local field potentials were recorded from two monkeys with implanted multi-site intracranial Utah arrays during transcranial direct current stimulation (tDCS), and the neural effect predictions obtained from optimized electrode placement were assessed. Comparative data between the two sites of intracranial recordings during tDCS partially validated the predictions of our tES optimization algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2016.7591061 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!