In this work, a graphical method to study cardiovascular coupling, called delta space plot analysis (DSPA), was introduced. The graphical representation is susceptible to be parameterized in shape and orientation. The usefulness of this technique was studied on cardiovascular data from patients with vasovagal syncope (VVS) and from controls. The study included 15 female patients diagnosed with VVS and 11 age-matched healthy female subjects. All subjects were enrolled in a head-up tilt (HUT) test, breathing normally, including 5 minutes of supine position (baseline) and 18 minutes of 70° orthostatic phase. The DSPA parameters were obtained at different times during the HUT test, i.e., at baseline, early (first 5 min) and late (10-15 min) orthostatic phases. In baseline there were no considerable differences between female controls and female patients. During the late orthostatic phase, parameters from DSPA showed highly significantly (p=0.000003) reduced cardiovascular coupling in patients. Findings indicated a loss of control on cardiovascular coupling in female patients susceptible to vasovagal syncope during orthostatic challenge. In addition, this study provided promising results for a new graphical method to investigate cardiovascular coupling.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2016.7590794DOI Listing

Publication Analysis

Top Keywords

cardiovascular coupling
20
vasovagal syncope
12
female patients
12
delta space
8
space plot
8
plot analysis
8
syncope orthostatic
8
orthostatic challenge
8
graphical method
8
hut test
8

Similar Publications

Characteristics of brain network after cardiopulmonary phase synchronization enhancement.

Respir Physiol Neurobiol

January 2025

Key Laboratory of Biomedical Information Engineering of Education Ministry, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China. Electronic address:

The central neural mechanism plays an important role in cardiopulmonary coupling. How the brain stem affects the cardiopulmonary coupling is relatively clear, but there are few studies on the cerebral cortex activity of cardiopulmonary coupling. We aim to study the response of the cerebral cortex for cardiopulmonary phase synchronization enhancement.

View Article and Find Full Text PDF

Stay connected: The myoendothelial junction proteins in vascular function and dysfunction.

Vascul Pharmacol

January 2025

Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy. Electronic address:

The appropriate regulation of peripheral vascular tone is crucial for maintaining tissue perfusion. Myoendothelial junctions (MEJs), specialized connections between endothelial cells and vascular smooth muscle cells, are primarily located in peripheral resistance vessels. Therefore, these junctions, with their key membrane proteins, play a pivotal role in the physiological control of relaxation-contraction coupling in resistance arterioles, mainly mediated through endothelium-derived hyperpolarization (EDH).

View Article and Find Full Text PDF

An Injectable Multifunctional Nanosweeper Eliminates Cardiac Mitochondrial DNA to Reduce Inflammation.

Adv Healthc Mater

January 2025

Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.

Myocarditis, a leading cause of sudden cardiac death and heart transplantation, poses significant treatment challenges. The study of clinical samples from myocarditis patients reveals a correlation between the pathogenesis of myocarditis and cardiomyocyte mitochondrial DNA (mtDNA). During inflammation, the concentration of mtDNA in cardiomyocytes increases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!