Wearable technology permeates every aspect of our daily life increasing the need of reliable and interpretable models for processing the large amount of biomedical data. We propose the EDA-Gram, a multidimensional fingerprint of the electrodermal activity (EDA) signal, inspired by the widely-used notion of spectrogram. The EDA-Gram is based on the sparse decomposition of EDA from a knowledge-driven set of dictionary atoms. The time axis reflects the analysis frames, the spectral dimension depicts the width of selected dictionary atoms, while intensity values are computed from the atom coefficients. In this way, EDA-Gram incorporates the amplitude and shape of Skin Conductance Responses (SCR), which comprise an essential part of the signal. EDA-Gram is further used as a foundation for signal-specific feature design. Our results indicate that the proposed representation can accentuate fine-grain signal fluctuations, which might not always be apparent through simple visual inspection. Statistical analysis and classification/regression experiments further suggest that the derived features can differentiate between multiple arousal levels and stress-eliciting environments for two datasets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285921 | PMC |
http://dx.doi.org/10.1109/EMBC.2016.7590725 | DOI Listing |
Biol Psychol
January 2025
Department of Psychology, Institute for Mind and Brain, University of South Carolina, Columbia, SC 29201, USA. Electronic address:
We examined differences in physiological responses to aversive and non-aversive naturalistic audiovisual stimuli and their auditory and visual components within the same experiment. We recorded five physiological measures that have been shown to be sensitive to affect: electrocardiogram, electromyography (EMG) for zygomaticus major and corrugator supercilii muscles, electrodermal activity (EDA), and skin temperature. Valence and arousal ratings confirmed that aversive stimuli were more negative in valence and higher in arousal than non-aversive stimuli.
View Article and Find Full Text PDFPsychophysiology
January 2025
Department of Psychology, University of Bonn, Bonn, Germany.
Imaginal exposure is a standard procedure of cognitive behavioral therapy for the treatment of anxiety and panic disorders. It is often used when in vivo exposure is not possible, too stressful for patients, or would be too expensive. The Bio-Informational Theory implies that imaginal exposure is effective because of the perceptual proximity of mental imagery to real events, whereas empirical findings suggest that propositional thought of fear stimuli (i.
View Article and Find Full Text PDFJMIR Med Inform
January 2025
School of Software, Taiyuan University of Technology, Jingzhong, China.
Background: The prompt and accurate identification of mild cognitive impairment (MCI) is crucial for preventing its progression into more severe neurodegenerative diseases. However, current diagnostic solutions, such as biomarkers and cognitive screening tests, prove costly, time-consuming, and invasive, hindering patient compliance and the accessibility of these tests. Therefore, exploring a more cost-effective, efficient, and noninvasive method to aid clinicians in detecting MCI is necessary.
View Article and Find Full Text PDFDisabil Rehabil Assist Technol
January 2025
Industrial and Systems Engineering, University at Buffalo, Buffalo, NY, USA.
The aim of this study was to explore the feasibility of using electrodermal activity (EDA) to detect changes in physiological arousal linked to perceptions of accommodations, focusing on universal design (UD) features. In environments like hotels, designers must consider wellness, social integration, and cultural appropriateness to effectively implement UD. Challenges exist with implementing and evaluating UD to accommodate diverse user needs due to conflicting definitions and application issues.
View Article and Find Full Text PDFAppl Psychophysiol Biofeedback
January 2025
Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
Stress responses in real-world settings are less studied compared to controlled laboratory environments, limiting our understanding of their impact on cognitive performance. This study investigates the relationship between physiological stress signals and academic performance using an open-access dataset of 10 students assessed across three exam sessions (Midterm 1, Midterm 2, and Final Exam). Physiological measures, including electrodermal activity (EDA), heart rate (HR), and skin surface temperature (TEMP), along with exam grades, were analyzed using traditional hypothesis testing, bootstrap method, correlation analysis, and regression tree modeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!