Recent research activities in the area of low-cost sensing and diagnostics that are realized on cellulosic paper substrate are presented. First a three-dimensional origami paper-based analytical device (omPAD) with multiple electrochemical sensors, an integrated sample reservoir and tight integration with a custom CMOS potentiostat is presented. Second, an optical sensor array with built-in microfluidic channel for sample delivery is presented. The sensors are fabricated using a combination of wax printing and screen-printing using a solution based approach in ambient conditions without the need for expensive fabrication equipment or a cleanroom. Readout is based on using existing consumer grade electronic devices like flatbed scanner (for optical sensor) or custom designed CMOS potentiostat (for electrochemical sensors). Together the 3D paper-based analytical device with integrated sensor, microfluidics and portable readout instrumentation demonstrates a low-cost, self-contained system suitable for sensing and point-of-care diagnostics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2016.7590701 | DOI Listing |
Commun Biol
January 2025
Department of Neurology, Peking University First Hospital, Beijing, People's Republic of China.
Persistent Postural-Perceptual Dizziness (PPPD) is a common cause of chronic vestibular syndrome. Although previous studies have identified central abnormalities in PPPD, the specific neural circuits and the alterations in brain network topological properties, and their association with dizziness and postural instability in PPPD remain unclear. This study includes 30 PPPD patients and 30 healthy controls.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Department of Trauma and Orthopaedics, Royal Free London NHS Foundation Trust, London, UK.
Ganglion cysts are commonly found in areas of constant mechanical stress such as the joints and tendons of the wrist or hand as well as the anterior aspect of the ankle. In the knee, parameniscal cysts are often encountered secondary to meniscal tears or articular degeneration. Intra-articular ganglion cysts are uncommon and often arise from the cruciate ligaments and are found in the intercondylar notch.
View Article and Find Full Text PDFMagn Reson Imaging
January 2025
Department of Medical Imaging, Pingyin people's Hospital, Jinan 250400, China.
Magnetic Resonance Imaging is a cornerstone of medical diagnostics, providing high-quality soft tissue contrast through non-invasive methods. However, MRI technology faces critical limitations in imaging speed and resolution. Prolonged scan times not only increase patient discomfort but also contribute to motion artifacts, further compromising image quality.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Electronic address:
Isothermal amplification-based nucleic acid detection technologies have become rapid and efficient tools for molecular diagnostics. Sequence-specific monitoring methods are crucial for isothermal amplification, as they help identify the occurrence of extended primer dimers, which can lead to false positive results. Fluorescent aptamers are promising tools for real-time monitoring of isothermal amplification but are inherently limited by thermostability.
View Article and Find Full Text PDFTalanta
January 2025
School of Medical Laboratory, Hunan University of Medicine, Hunan, 418000, China. Electronic address:
Rapid and accurate detection of Chlamydia psittaci, the causative agent of psittacosis, is crucial for both human and animal health but presents significant challenges, particularly in grassroots health institutions. Our previous PDTCTR fluorescence sensing platform, which combined the engineered Cas12f1_ge4.1 system with recombinase polymerase amplification (RPA), significantly enhanced detection efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!