Identifying Epithelial Endocytotic Mechanisms of the Peanut Allergens Ara h 1 and Ara h 2.

Int Arch Allergy Immunol

Centre for Cellular and Molecular Biology (CCMB), School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia.

Published: April 2017

Background: Peanuts are still one of the highest contributors to anaphylactic deaths after ingestion of a food allergen. At the molecular level, interactions between peanut allergens and the intestinal epithelium are largely unexplored. Previous findings by our research group demonstrated that the major peanut allergens, i.e., Ara h 1, Ara h 2, Ara h 3, and Ara h 6, were able to cross the Caco-2 human cell culture model of the intestinal epithelium. This research broadened our investigation to identify the mechanisms by which the Caco-2 monolayers uptake peanut allergens, specifically by endocytosis. Here, we aim to increase our understanding of allergen-epithelial interactions and, more broadly, the pathway from allergen to allergy.

Methods: The human Caco-2 cell culture model was exposed to peanut extract and a combination of confocal microscopy and inhibition studies were used to identify the endocytotic mechanisms of peanut allergens in intestinal epithelia.

Results: Our findings demonstrate that the peanut allergens Ara h 1 and Ara h 2 are transported through intestinal epithelia initially via early endosomes using multiple endocytotic mechanisms. From there, they are then transported to late endosomes and ultimately to lysosomes.

Conclusions: These novel findings provide insight into the allergen-epithelial interactions of peanut allergens with the intestinal epithelium. Consequently, this opens the possibility of the use of these endocytotic pathways as targets for inhibitors in therapeutic development and preventative measures for peanut allergy in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000451085DOI Listing

Publication Analysis

Top Keywords

peanut allergens
28
ara ara
20
endocytotic mechanisms
12
allergens ara
12
allergens intestinal
12
intestinal epithelium
12
peanut
9
mechanisms peanut
8
ara
8
interactions peanut
8

Similar Publications

Rationale: Approximately 32 million people in the United States suffer from food allergies. Some food groups, such as legumes - peanuts, tree nuts, fish, and shellfish, have a high risk of cross-reactivity. However, the murine model of multiple food group cross-reactivity is limited.

View Article and Find Full Text PDF

Background: Oral Mucosal Immunotherapy (OMIT) uses a specifically formulated toothpaste to deliver allergenic proteins to immunologically active areas of the oral cavity. This represents a new delivery mechanism with several features designed to improve food allergy desensitization. OMIT presents advantages over other approaches to allergy immunotherapy due to its targeted delivery and simplified administration.

View Article and Find Full Text PDF

Peanuts are highly nutritious but pose a significant risk of triggering food allergies. While heat treatment can reduce the allergenicity of many foods, it may also alter their structure, potentially impacting detection results. This study employed double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and lateral flow immunochromatography (LFIA) to evaluate the allergen Ara h 3 following heat-moisture treatment.

View Article and Find Full Text PDF

BARRIERS AND ENABLERS OF DIETARY REINTRODUCTION FOLLOWING NEGATIVE ORAL FOOD CHALLENGE: A SCOPING REVIEW.

J Allergy Clin Immunol Pract

January 2025

University of Queensland, St Lucia, Australia; Centre for Food Allergy Research, Murdoch Children's Research Institute, Parkville, Australia. Electronic address:

Background: Following a negative oral food challenge (OFC), it is recommended the individual continues to consume the historical allergen regularly. However, the proportion of families achieving sustained reintroduction, and enablers and barriers for reintroduction, are currently unclear.

Objective: To understand the frequency and definitions of optimal food reintroduction in children and adolescents following negative OFC, and associated barriers and enablers.

View Article and Find Full Text PDF

Antigenic determinants underlying IgE-mediated anaphylaxis to peanut.

J Allergy Clin Immunol

January 2025

Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN.

Background: Studies of human IgE and its targeted epitopes on allergens have been very limited. We have an established method to immortalize IgE encoding B cells from allergic individuals.

Objective: To develop an unbiased and comprehensive panel of peanut-specific human IgE mAbs to characterize key immunodominant antigenic regions and epitopes on peanut allergens to map the molecular interactions responsible for inducing anaphylaxis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!