Synthesis of Spiro-dihydroquinoline and Octahydrophenanthrene Derivatives via Palladium-Catalyzed Intramolecular Oxidative Arylation.

Org Lett

School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, P.R. China.

Published: March 2017

A method for intramolecular sp C-H oxidative arylation of unactivated cyclic olefins has been developed to access spiro-dihydroquinoline and octahydrophenanthrene derivatives in a straightforward and efficient manner. Bearing picolinamide as a directing group, the alkenyl anilines cyclized to afford spiro-dihydroquinolines in moderate to excellent yields via direct oxidative arylation, while the alkenyl benzylamines furnished the octahydrophenanthrene derivatives in moderate yields via sequential oxidative arylation and double acetoxylation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.7b00228DOI Listing

Publication Analysis

Top Keywords

oxidative arylation
16
octahydrophenanthrene derivatives
12
spiro-dihydroquinoline octahydrophenanthrene
8
synthesis spiro-dihydroquinoline
4
derivatives palladium-catalyzed
4
palladium-catalyzed intramolecular
4
oxidative
4
intramolecular oxidative
4
arylation
4
arylation method
4

Similar Publications

Aims: Organic thiocyanates are important pharmaceutical intermediates. This study aimed to develop a selective and efficient approach for synthesizing organic thiocyanates.

Methods: Under mild reaction conditions, an array of alkenes, KSCN, and diaryliodonium salts are considered good substrates, providing various aryl-substituted alkylthiocyanates with modest to excellent yield.

View Article and Find Full Text PDF

A C-H Arylation-Based Enantioselective Synthesis of Planar Chiral Cyclophanes.

Angew Chem Int Ed Engl

January 2025

University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, SWITZERLAND.

Despite the growing importance of planar chiral macrocyclophanes owing to their unique properties in different areas of chemistry, methods that are effective in controlling their planar chirality are restricted to certain molecular scaffolds. Herein, we report the first Pd(0)-catalyzed enantioselective intermolecular C-H arylation that induces planar chirality by installing bulky aryl groups through dynamic kinetic resolution (DKR). A computer-assisted approach allowed a fine-tuning of the structure of the employed chiral bifunctional phosphine-carboxylate ligands to achieve high enantioselectivities.

View Article and Find Full Text PDF

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

Pd(OAc)-Catalyzed Approach to Phenanthridin-6(5)-one Skeletons.

Org Lett

January 2025

School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.

Herein, we present a Pd(OAc)/Dppp-catalyzed synthesis of 4-arylphenanthridinones from 2-bromobenzamides and iodobenzene, which undergoes successive Ullman cross-coupling, C-H activation, and oxidative coupling dehydrogenation process. The presented methods offer an adaptable and modular synthesis route for efficiently producing a wide array of valuable phenanthridiones, demonstrating exceptional compatibility with functional groups. Alternatively, a 1:1 cross-coupling reaction utilizing an intramolecular norbornene moiety as the ligand resulted in phenanthridinones through -arylation and C-H activation.

View Article and Find Full Text PDF

This study introduces a novel methodology for the direct construction of tetrasubstituted centers, utilizing secondary C(sp)-H and C(sp)-H substrates, specifically indolin-2-ones and indoles, through an innovative oxidative cross-coupling reaction. Facilitated by a straightforward copper salt catalyst, this reaction proceeds efficiently at a mild temperature of 40 °C under operationally streamlined conditions. Emphasizing sustainability, this method is notably enhanced by employing air (molecular oxygen) as an eco-friendly oxidant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!