A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Normal human immune cells are sensitive to telomerase inhibition by Brassica-derived 3,3-diindolylmethane,partly mediated via ERα/β-AP1 signaling. | LitMetric

Scope: Indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) from Brassica plants are regarded as promising anticancer phytochemicals. The enzyme telomerase is a very attractive target for cancer therapeutics; in normal cells such as lymphocytes, it plays a decisive role for cell maintenance. The effect of I3C and DIM on telomerase in normal human immune cells (PBMC) was studied compared to leukaemia cells (HL-60). Signalling of telomerase regulation via estrogen receptor (ER) was addressed.

Methods And Results: Short-term treatment with I3C and DIM inhibited telomerase activity in leukaemia cells (>30 μM I3C; >3 μM DIM). In CD3/CD28 activated PBMC, inhibition was stronger, though (>3 μM I3C; >1 μM DIM). DIM long-term treatment resulted in DNA damage induction and proliferation inhibition in PBMC as determined by the comet assay and CFSE staining, respectively. A relevance of ERα/β-AP1 signaling for telomerase inhibition on enzyme activity, but not transcription level became evident indicating a nonclassical mode for ER regulation of telomerase by DIM.

Conclusion: Although desired in cancer cells, this study identified a potential adverse impact of I3C and DIM on telomerase action in normal human immune cells, partly mediated by an ER-dependent mechanism. These new findings should be considered for potential chronic high-dose chemoprevention strategies using these compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201600524DOI Listing

Publication Analysis

Top Keywords

normal human
12
human immune
12
immune cells
12
i3c dim
12
telomerase
8
telomerase inhibition
8
erα/β-ap1 signaling
8
dim telomerase
8
leukaemia cells
8
μm i3c
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!