It is a great challenge to develop iron-based highly-efficient and durable catalytic systems for the hydrogen evolution reaction (HER) by understanding and learning from [FeFe]-hydrogenases. Here we report photocatalytic H production by a hybrid assembly of a sulfonate-functionalized [FeFe]-hydrogenase mimic (1) and CdSe quantum dot (QD), which is denoted as 1/β-CD-6-S-CdSe (β-CD-6-SH = 6-mercapto-β-cyclodextrin). In this assembly, thiolato-functionalized β-CD acts not only as a stabilizing reagent of CdSe QDs but also as a host compound for the diiron catalyst, so as to confine CdSe QDs to the space near the site of diiron catalyst. In addition, another two reference systems comprising MAA-CdSe QDs (HMAA = mercaptoacetic acid) and 1 in the presence and absence of β-CD, denoted as 1/β-CD/MAA-CdSe and 1/MAA-CdSe, were studied for photocatalytic H evolution. The influences of β-CD and the stabilizing reagent β-CD-6-S on the stability of diiron catalyst, the fluorescence lifetime of CdSe QDs, the apparent electron transfer rate, and the photocatalytic H-evolving efficiency were explored by comparative studies of the three hybrid systems. The 1/β-CD-6-S-CdSe system displayed a faster apparent rate for electron transfer from CdSe QDs to the diiron catalyst compared to that observed for MAA-CdSe-based systems. The total TON for visible-light driven H evolution by the 1/β-CD-6-S-CdSe QDs in water at pH 4.5 is about 2370, corresponding to a TOF of 150 h in the initial 10 h of illumination, which is 2.7- and 6.6-fold more than the amount of H produced from the reference systems 1/β-CD/MAA-CdSe and 1/MAA-CdSe. Additionally, 1/β-CD-6-S-CdSe gave 2.4-5.1 fold enhancement in the apparent quantum yield and significantly improved the stability of the system for photocatalytic H evolution.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6fd00207bDOI Listing

Publication Analysis

Top Keywords

cdse qds
16
diiron catalyst
16
photocatalytic production
8
production hybrid
8
hybrid assembly
8
cdse quantum
8
quantum dot
8
stabilizing reagent
8
reference systems
8
1/β-cd/maa-cdse 1/maa-cdse
8

Similar Publications

As a newly emerging technology, conformational engineering (CE) has been gradually displaying the power of producing protein-like nanoparticles (NPs) by tuning flexible protein fragments into their original native conformation on NPs. But apparently, not all types of NPs can serve as scaffolds for CE. To expedite the CE technology on a broader variety of NPs, the essential characteristic of NPs as scaffolds for CE needs to be identified.

View Article and Find Full Text PDF

Knowledge of the structure-property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands.

View Article and Find Full Text PDF

Novel Dual-Potential Color-Resolved Luminophore Ru(bpy)-Doped CdSe QDs for Bipolar Electrode Electrochemiluminescence Biosensing.

Anal Chem

January 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

The classical electrochemiluminescence (ECL) reagent Ru(bpy) was first doped into CdSe QDs to prepare novel dual-potential color-resolved luminophore Ru-CdSe QDs. Ru-CdSe QDs emitted a strong red ECL signal at a positive potential with coreactant TPrA and a strong green ECL signal at a negative potential with coreactant KSO. As a proof-of-concept application, this work introduced Ru-CdSe QDs into a dual-channel closed bipolar electrode (CBPE) system to construct an ECL biosensor for simultaneous detection of chloramphenicol (CAP) and kanamycin (KAN).

View Article and Find Full Text PDF

Time-resolved single molecule localization microscopy (TR-SMLM) with a 2 × 2 pixel fiber optic array camera was combined with time-correlated single photon counting (TCSPC) to obtain super-resolved fluorescence lifetime images of individual Cy3 dye molecules and individual colloidal CdSe/CdS/ZnS core/shell/shell semiconductor quantum dots (QDs). The characteristic blinking and bleaching behavior of the Cy3 and the blinking behavior of the QD emitters were used as distinguishing optical characteristics to isolate them and determine their centroid locations with spatial resolution below the optical diffraction limit. TCSPC was used to characterize the fluorescence lifetime and intensity corresponding to each emitter location.

View Article and Find Full Text PDF

Suppression of Interfacial Oxidation in Core/Shell InP Quantum Dots through Solvent Assisted Core-Etching Strategy for Efficient Green Light-Emitting Diodes.

Nano Lett

January 2025

Key Laboratory of Advanced Display and System Applications Education of Ministry, Shanghai University, 149 Yanchang Road, Shanghai 200072, China.

Indium phosphide (InP) quantum dots (QDs) are promising alternative heavy-metal CdSe QDs for light-emitting diode (LED) application. However, their highly reactive core surface is prone to oxidation, which reduces the photoluminescence quantum yield (PL QY) and impedes subsequent shell growth. Traditional etching methods using HF aqueous solution are problematic as water can induce reoxidation during or after etching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!