The co-ammonolysis of V(NMe) and Si(NHMe) with ammonia in THF and in the presence of ammonium triflate ([NH][CFSO]) leads to the formation of monolithic gels. Pyrolysing these gels produces mesoporous composite materials containing nanocrystalline VN and amorphous silicon imidonitride. Elemental mapping indicated a thorough distribution of VN with no evidence of large cluster segregation. Whilst not active for ammonia synthesis, the silicon nitride based materials were found to possess activity for the CO-free production of H from methane, which makes them candidates for applications in which the presence of low levels of CO in H feedstreams is detrimental.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7dt00285h | DOI Listing |
Extracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency.
View Article and Find Full Text PDFMolecules
January 2025
School of Mechanical Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
RSC Adv
January 2025
Institute of Advanced Structure Technology, Beijing Institute of Technology Beijing 100081 China
SiN ceramic has received great attention because of its sound biological performances, which make it an attractive ceramic implant material in healthcare, particularly in orthopedic surgery. With the advancement of 3D printing technology, SiN ceramics can now be fabricated into customized implants with precise anatomical shapes, sizes, and microstructures, catering to the individual needs of patients. We, therefore, conducted a comprehensive review of how 3D printing enables complex-shaped SiN ceramic implants for clinical applications.
View Article and Find Full Text PDFSci Rep
January 2025
Departemant of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.
With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
Glycans, nucleic acids and proteins are three major classes of natural biopolymers. The extremely high diversity of isomerization makes structural elucidation of glycans the most challenging job among three classes. In the past few years, the single molecule sensing technique based on nanopores has achieved great success in sequencing of DNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!