Liposomal Nanotechnology for Cancer Theranostics.

Curr Med Chem

Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.

Published: August 2018

Liposomes are a type of biomimetic nanoparticles generated from self-assembling concentric lipid bilayer enclosing an aqueous core domain. They have been attractive nanocarriers for the delivery of many drugs (e.g. radiopharmaceuticals, chemotherapeutic agents, porphyrin) and diagnostic agents (e.g. fluorescent dyes, quantum dots, Gadolinium complex and Fe3O4) by encapsulating (or adsorbing) hydrophilic one inside the liposomal aqueous core domain (or on the bilayer membrane surface), and by entrapping hydrophobic one within the liposomal bilayer. Additionally, the liposome surface can be easily conjugated with targeting molecules. Liposomes may accumulate in cancerous tissues not only passively via enhanced permeability and retention (EPR) effect, but also actively by targeting cancer cell or angiogenic marker specifically. The multimodality imaging functionalization of liposomal therapeutic agents makes them highly attractive for individualized monitoring of the in vivo cancer targeting and pharmacokinetics of liposomes loading therapeutic drugs, and predicting therapeutic efficacy in combination with the helpful information from each imaging technique. The present review article will highlight some main advances of cancer theranostic liposomes with a view to activate further research in the nanomedicine community.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867324666170306105350DOI Listing

Publication Analysis

Top Keywords

aqueous core
8
core domain
8
liposomal
4
liposomal nanotechnology
4
cancer
4
nanotechnology cancer
4
cancer theranostics
4
liposomes
4
theranostics liposomes
4
liposomes type
4

Similar Publications

The development of electrode materials for aqueous ammonium-ion supercapacitors (NH-SCs) has garnered significant attention in recent years. Poor intrinsic conductivity, sluggish electron transfer and ion diffusion kinetics, as well as structural degradation of vanadium oxides during the electrochemical process, pose significant challenges for their efficient ammonium-ion storage. In this work, to address the above issues, the core-shell VO·nHO@poly(3,4-ethylenedioxithiophene) composite (denoted as VOH@PEDOT) is designed and prepared by a simple agitation method to boost the ammonium-ion storage of VO·nHO (VOH).

View Article and Find Full Text PDF

Synthesis of P(AM/AA/SSS/DMAAC-16) and Studying Its Performance as a Fracturing Thickener in Oilfields.

Polymers (Basel)

January 2025

Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.

In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.

View Article and Find Full Text PDF

The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized for the countercurrent chromatography of polar constituents from L. seeds.

View Article and Find Full Text PDF

Antiviral Activity and Underlying Mechanism of Aqueous Extract for Treating SARS-CoV-2.

Molecules

January 2025

Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.

Despite the widespread use of COVID-19 vaccines, there is still a global need to find effective therapeutics to deal with the variants of SARS-CoV-2. (MH) is a herbal medicine credited with antiviral effects. This study aims to investigate the antiviral effects and the underlying mechanism of aqueous extract of (AEMH) for treating SARS-CoV-2.

View Article and Find Full Text PDF

The design of functional artificial cells involves compartmentalizing biochemical processes to mimic cellular organization. To emulate the complex chemical systems in biological cells, it is necessary to incorporate an increasing number of cellular functions into single compartments. Artificial organelles that spatially segregate reactions inside artificial cells will be beneficial in this context by rectifying biochemical pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!