Controlled Growth of Gold Nanostars: Effect of Spike Length on SERS Signal Enhancement.

Chemphyschem

Electrodics and Electrocatalysis (EEC) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, 630003, Tamilnadu, India.

Published: May 2017

Two different types of gold nanostars (Au NS), namely, short-spiked nanostars (SSNS) and long-spiked nanostars (LSNS), are prepared by using a hexagonal lyotropic liquid-crystalline (LLC) phase as a template. The formation, size and length of spikes or arms of the resultant Au NS are controlled by preparation in either a hexagonal LLC phase or an isotropic phase. These NS are anchored onto indium tin oxide (ITO) electrodes through a self-assembled monolayer of 3-mercaptopropyltrimethoxysilane, which acts as a linker molecule. Structural and morphological characterisations of SSNS- and LSNS-anchored ITO electrodes are performed by means of microscopic and spectroscopic analyses. Further electrochemical techniques, namely, cyclic voltammetry and electrochemical impedance spectroscopy, are also used to confirm the immobilisation of these Au NS on ITO electrodes and to study the electrochemical characteristics. These studies clearly reveal the formation of star-shaped, branched, anisotropic nanostructures of gold during the template preparation method and these Au NS are successfully anchored onto ITO electrodes through a covalent immobilisation strategy. Furthermore, the SERS activity of these Au NS is analysed by using glutathione and crystal violet as analytes and by employing glass and ITO as substrates. It is interesting to note that SSNS show a significant enhancement in SERS signals relative to those of LSNS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201601380DOI Listing

Publication Analysis

Top Keywords

ito electrodes
16
gold nanostars
8
llc phase
8
ito
5
controlled growth
4
growth gold
4
nanostars
4
nanostars spike
4
spike length
4
length sers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!