Different mitotype-specific markers were developed to distinguish different cytoplasms in Brassica napus L. Mitotype-specific markers have been developed to distinguish different mitotypes in plant. And use of molecular markers to identify different mitotypes in Brassica napus would enhance breeding efficiency. Here, we comparatively analyzed six sequenced mitochondrial genomes in Brassica napus and identified collinear block sequences and mitotype-specific sequences (MSSs) of these mitochondrial genomes. The collinear block sequences between mitochondrial genomes of nap, cam, and pol cytoplasmic male sterility (CMS) lines were higher than those of other lines. After comparative analysis of the six sequenced mitochondrial genomes (cam, nap, ole, pol CMS, ogu CMS, and hau CMS), 90 MSSs with sizes ranging from 101 to 9981 bp and a total length of 103,756 bp (accounting for 6.77% of the mitochondrial genome sequences) were identified. Additionally, 12 mitotype-specific markers were developed based on the mitochondrial genome-specific sequences in order to distinguish among these different mitotypes. Cytoplasms of 570 different inbred lines collected across scientific research institutes in China were identified using the MSS markers developed in our study. In addition to confirming the accuracy of the cytoplasmic identification, we also identified mitotypes that have not been reported in Brassica napus. Our study may provide guidance for the classification of different mitotypes in B. napus breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-017-2121-4DOI Listing

Publication Analysis

Top Keywords

brassica napus
20
mitotype-specific markers
16
markers developed
16
mitochondrial genomes
16
napus mitotype-specific
8
developed distinguish
8
distinguish mitotypes
8
sequenced mitochondrial
8
collinear block
8
block sequences
8

Similar Publications

Leaf is the main photosynthetic organ at the seedling stage of rapeseed and leaf size is a crucial agronomic trait affecting rapeseed yield. Understanding the genetic mechanisms underlying leaf size is therefore important for rapeseed breeding. In this study, QTL mapping for three traits related to leaf size, i.

View Article and Find Full Text PDF

Impact of iron oxide nanoparticles on cadmium toxicity mitigation in Brassica napus.

Plant Physiol Biochem

January 2025

Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China. Electronic address:

Cadmium (Cd) contamination greatly hinders plant productivity. Nanotechnology offers a promising solution for Cd phytotoxicity. The novelty of this study lies in the limited research on the effects of nanoiron (FeONPs) in regulating Cd toxicity in oilseed crops.

View Article and Find Full Text PDF

Unlocking olive rhizobacteria: harnessing biocontrol power to combat olive root rot and promote plant growth.

Int Microbiol

January 2025

Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.

Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies.

View Article and Find Full Text PDF

Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.

View Article and Find Full Text PDF

Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Against .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.

Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!