From Current Algae Products to Future Biorefinery Practices: A Review.

Adv Biochem Eng Biotechnol

Bioprocess Engineering, AlgaePARC, Wageningen University, PO Box. 16, 6700 AA, Wageningen, The Netherlands.

Published: July 2019

Microalgae are considered to be one of the most promising next generation bio-based/food feedstocks with a unique lipid composition, high protein content, and an almost unlimited amount of other bio-active molecules. High-value components such as the soluble proteins, (poly) unsaturated fatty acids, pigments, and carbohydrates can be used as an important ingredient for several markets, such as the food/feed/chemical/cosmetics and health industries. Although cultivation costs have decreased significantly in the last few decades, large microalgae production processes become economically viable if all complex compounds are optimally valorized in their functional state. To isolate these functional compounds from the biomass, cost-effective, mild, and energy-efficient biorefinery techniques need to be developed and applied. In this review we describe current microalgae biorefinery strategies and the derived products, followed by new technological developments and an outlook toward future products and the biorefinery philosophy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/10_2016_64DOI Listing

Publication Analysis

Top Keywords

current algae
4
algae products
4
products future
4
biorefinery
4
future biorefinery
4
biorefinery practices
4
practices review
4
review microalgae
4
microalgae considered
4
considered promising
4

Similar Publications

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Hollow Salt Prepared Through Spray Drying with Alginate Enhances Salinity Perception to Reduce Sodium Intake.

Foods

December 2024

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Liaoning Key Laboratory of Food Nutrition and Health, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Currently, high-salt diets have become one of the world's biggest dietary crisis and long-term high-salt diets are seriously detrimental to human health. In response to this situation, the present study proposed a saltiness enhancement strategy using alginate, which is a dietary fibre from brown algae and has many health benefits, such as regulating intestinal microbiota, anti-hypertension and anti-obesity. The comparison of alginates with different viscosities showed that alginate of 1000-1500 cps at a concentration of 1.

View Article and Find Full Text PDF

Background: Paenibacillus polymyxa, is a Gram-positive, plant growth promoting bacterium, known for producing 98% optically pure 2,3-butanediol, an industrially valuable chemical for solvents, plasticizers and resins. Immobilization of Paenibacillus polymyxa has been proposed to improve the cell stability and efficiency of the fermentation process, reduce contamination and provide easy separation of butanediol in the culture broth as compared to conventional bioprocesses. This research aimed to explore the potential of Paenibacillus polymyxa with immobilization technique to produce 2,3-butanediol.

View Article and Find Full Text PDF

The consumer demand for functional foods derived from natural sources has been enhanced due to health-promoting effects. Algae are widely available globally as a sustainable source of proteins, lipids, and carbohydrates. Algal lipids are underexplored natural sources that exhibit several nutraceutical effects and applications in fortification, cosmetics, and pharmaceuticals.

View Article and Find Full Text PDF

Engineering carbon assimilation in plants.

J Integr Plant Biol

January 2025

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Carbon assimilation is a crucial part of the photosynthetic process, wherein inorganic carbon, typically in the form of CO, is converted into organic compounds by living organisms, including plants, algae, and a subset of bacteria. Although several carbon fixation pathways have been elucidated, the Calvin-Benson-Bassham (CBB) cycle remains fundamental to carbon metabolism, playing a pivotal role in the biosynthesis of starch and sucrose in plants, algae, and cyanobacteria. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the key carboxylase enzyme of the CBB cycle, exhibits low kinetic efficiency, low substrate specificity, and high temperature sensitivity, all of which have the potential to limit flux through this pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!