Wearable energy storage devices are of practical interest, but few have been commercially exploited. Production of electrodes with extended cycle life, as well as high energy and power densities, coupled with flexibility, remains a challenge. Herein, we have demonstrated the development of a high-performance hybrid carbon nanotube (CNT) fiber-based supercapacitor for the first time using conventional wet-spinning processes. Manganese dioxide (MnO) nanoflakes were deposited onto the as-prepared CNT fibers by electrodeposition to form highly flexible nanocomposites fibers. As-prepared fibers were characterized by electron microscopy, electrical, mechanical, and electrochemical measurements. It was found that the specific capacitance was over 152 F g (156 F cm), which is about 500% higher than the multi-walled carbon nanotube/MnO yarn-based supercapacitors. The measured energy density was 14.1 Wh kg at a power density of 202 W kg. These values are 232% and 32% higher than the energy density and power density of MWNT/MnO yarn-based supercapacitor, respectively. It was found that the cyclic retention ability was more stable, revealing a 16% increase after 10 000 cycles. Such substantial enhancements of key properties of the hybrid material can be associated with the synergy of CNT and MnO nanoparticles in the fiber structure. The use of wet-spun hybrid CNT for fiber-based supercapacitors has been demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr00408g | DOI Listing |
Polymers (Basel)
January 2025
Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul 01897, Republic of Korea.
Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as an interfacial layer between a methylammonium lead iodide (CHNHPbI, MAPbI) perovskite light-absorbing layer and a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) hole injection layer. The PAA-PI interfacial layer effectively suppresses carrier recombination at the interfaces, resulting in a high power conversion efficiency () of 11.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, Ege University, Izmir 35040, Turkey.
This study aims to enhance the electrical conductivity of commercially pure aluminium by minimizing impurities and grain boundaries in its microstructure, ultimately improving the efficiency of electric motors constructed from rotors with squirrel cages made from this material. For this purpose, an aluminium-boron (AlB8) master alloy was added to aluminium with a purity of 99.7%, followed by the application of a grain-coarsening heat treatment to the rotors.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Fiber System Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
Polybenzoxazines (PBzs), a class of high-performance thermosetting polymers, have gained significant attention for their exceptional thermal stability, mechanical properties, and chemical resistance, making them ideal for aerospace, electronics, and biomedical applications. Recent advancements emphasize their antimicrobial potential, attributed to unique structural properties and the ability to incorporate bio-active functional groups. This review highlights the synthesis, antimicrobial mechanisms, and applications of PBzs and their bio-based derivatives, focusing on sustainable materials science.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
LR18-SP08 Department of Radiology, University Hospital of Monastir, Monastir 5019, Tunisia.
To develop a computer-aided diagnosis (CAD) method for the classification of late gadolinium enhancement (LGE) cardiac MRI images into myocardial infarction (MI), myocarditis, and healthy classes using a fine-tuned VGG16 model hybridized with multi-layer perceptron (MLP) (VGG16-MLP) and assess our model's performance in comparison to various pre-trained base models and MRI readers. This study included 361 LGE images for MI, 222 for myocarditis, and 254 for the healthy class. The left ventricle was extracted automatically using a U-net segmentation model on LGE images.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Physics and New Energy Device School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
Smart grippers serving as soft robotics have garnered extensive attentions owing to their great potentials in medical, biomedical, and industrial fields. Though a diversity of grippers that account for manipulating the small objects (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!