Oxidative stress and synapse dysfunction are the major neurodegenerative damage correlated to cognitive impairment in Alzheimer's disease (AD). We have found that Brazilian green propolis (propolis) improves the cognitive functions of mild cognitive impairment patients living at high altitude; however, mechanism underlying the effects of propolis is unknown. In the present study, we investigated the effects of propolis on oxidative stress, expression of brain-derived neurotrophic factor (BDNF), and activity-regulated cytoskeleton-associated protein (Arc), the critical factors of synapse efficacy, using human neuroblastoma SH-SY5Y cells. Pretreatment with propolis significantly ameliorated the hydrogen peroxide- (HO-) induced cytotoxicity in SH-SY5Y cells. Furthermore, propolis significantly reduced the HO-generated reactive oxygen species (ROS) derived from mitochondria and 8-oxo-2'-deoxyguanosine (8-oxo-dG, the DNA oxidative damage marker) but significantly reversed the fibrillar -amyloid and IL-1-impaired BDNF-induced Arc expression in SH-SY5Y cells. Furthermore, propolis significantly upregulated BDNF mRNA expression in time- and dose-dependent manners. In addition, propolis induced Arc mRNA and protein expression via phosphoinositide-3 kinase (PI3K). These observations strongly suggest that propolis protects from the neurodegenerative damage in neurons through the properties of various antioxidants. The present study provides a potential molecular mechanism of Brazilian green propolis in prevention of cognitive impairment in AD as well as aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5317132 | PMC |
http://dx.doi.org/10.1155/2017/7984327 | DOI Listing |
Neurotherapeutics
December 2024
Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA; Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, 77030, USA. Electronic address:
Mitochondrial dysfunction is an important driver of neurodegeneration and synaptic abnormalities in Alzheimer's disease (AD). Amyloid beta (Aβ) in mitochondria leads to increased reactive oxygen species (ROS) production, resulting in a vicious cycle of oxidative stress in coordination with a defective electron transport chain (ETC), decreasing ATP production. AD neurons exhibit impaired mitochondrial dynamics, evidenced by fusion and fission imbalances, increased fragmentation, and deficient mitochondrial biogenesis, contributing to fewer mitochondria in brains of AD patients.
View Article and Find Full Text PDFCancer Genomics Proteomics
December 2024
Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
Background/aim: Treatment with retinoic acid (RA) often promotes neuroblastoma differentiation and growth inhibition, including the suppression of the expression of the MYCN oncogene. However, RA also targets protumoral chemokines, such as CCL2, which may contribute to the development of resistance. The present study aimed to investigate the regulation and function of CCL2 and N-Myc in RA-treated neuroblastoma cells.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain.
Anatoxin-a (ATX-a) is a cyanotoxin whose toxicological profile has been underinvestigated in comparison to other cyanotoxins such as microcystins (MCs) or cylindrospermopsin (CYN). However, its wide distribution, occurrence, and toxic episodes justify more attention. It is classified as a neurotoxin, but it has also been reported to affect other organs and systems.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Division of Toxicology, Institute for Medical Research and Occupational Health, HR-10 000 Zagreb, Croatia.
The increasing use of products for medicinal, dietary, and recreational purposes has raised concerns about mycotoxin contamination in cannabis and hemp. Mycotoxins persist in these products' post-processing, posing health risks via multiple exposure routes. This study investigated cytotoxic and genotoxic interactions between cannabidiol (CBD) and the mycotoxin citrinin (CIT) using human cell models: SH-SY5Y, HepG2, HEK293, and peripheral blood lymphocytes.
View Article and Find Full Text PDF3 Biotech
January 2025
Department of Botony, P.S.R College of Education, Sivakasi, Tamilnadu India.
This study aims to assess the neuroprotective effects of the methanolic extract of against oxidative stress and cell death induced by neurotoxins MPP in SH-SY5Y cells. Briefly, the methanolic extract of decreased the cytotoxicity of MPP in SH-SY5Y cells. Treatment with extract at a concentration of 400 µg/ml resulted in a notable decrease in cell death, particularly in MPP -induced cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!