Expanding Role of Type II Secretion in Bacterial Pathogenesis and Beyond.

Infect Immun

Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA.

Published: May 2017

Type II secretion (T2S) is one means by which Gram-negative pathogens secrete proteins into the extracellular milieu and/or host organisms. Based upon recent genome sequencing, it is clear that T2S is largely restricted to the , occurring in many, but not all, genera in the , , , and classes. Prominent human and/or animal pathogens that express a T2S system(s) include , , , , , , , , , and T2S-expressing plant pathogens include , , , , , , and T2S also occurs in nonpathogenic bacteria, facilitating symbioses, among other things. The output of a T2S system can range from only one to dozens of secreted proteins, encompassing a diverse array of toxins, degradative enzymes, and other effectors, including novel proteins. Pathogenic processes mediated by T2S include the death of host cells, degradation of tissue, suppression of innate immunity, adherence to host surfaces, biofilm formation, invasion into and growth within host cells, nutrient assimilation, and alterations in host ion flux. The reach of T2S is perhaps best illustrated by those bacteria that clearly use it for both environmental survival and virulence; e.g., employs T2S for infection of amoebae, growth within lung cells, dampening of cytokines, and tissue destruction. This minireview provides an update on the types of bacteria that have T2S, the kinds of proteins that are secreted via T2S, and how T2S substrates promote infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5400843PMC
http://dx.doi.org/10.1128/IAI.00014-17DOI Listing

Publication Analysis

Top Keywords

t2s
11
type secretion
8
host cells
8
host
5
expanding role
4
role type
4
secretion bacterial
4
bacterial pathogenesis
4
pathogenesis type
4
secretion t2s
4

Similar Publications

Audiovisual Breathing Guidance for Improved Image Quality and Scan Efficiency of T2- and Diffusion-Weighted Liver MRI.

Invest Radiol

January 2025

From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany (N.M., A.I., A.L., L.B., T.D., D. Kravchenko, D. Kuetting, C.C.P., J.A.L.); Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany (N.M., A.I., L.B., D. Kravchenko, D. Kuetting, J.A.L.); Philips Healthcare, Hamburg, Germany (C.K.); Philips Medical Systems, Eindhoven, the Netherlands (A.H.-M.); and Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany (C.Y.).

Objectives: Impaired image quality and long scan times frequently occur in respiratory-triggered sequences in liver magnetic resonance imaging (MRI). We evaluated the impact of an in-bore active breathing guidance (BG) application on image quality and scan time of respiratory-triggered T2-weighted (T2) and diffusion-weighted imaging (DWI) by comparing sequences with standard triggering (T2S and DWIS) and with BG (T2BG and DWIBG).

Materials And Methods: In this prospective study, random patients with clinical indications for liver MRI underwent 3 T MRI with standard and BG acquisitions.

View Article and Find Full Text PDF

Accelerated High-resolution T1- and T2-weighted Breast MRI with Deep Learning Super-resolution Reconstruction.

Acad Radiol

January 2025

Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (N.M., C.L., A.S., A.I., T.D., L.B., D.K., C.C.P., A.L., J.A.L.).

Rationale And Objectives: To assess the performance of an industry-developed deep learning (DL) algorithm to reconstruct low-resolution Cartesian T1-weighted dynamic contrast-enhanced (T1w) and T2-weighted turbo-spin-echo (T2w) sequences and compare them to standard sequences.

Materials And Methods: Female patients with indications for breast MRI were included in this prospective study. The study protocol at 1.

View Article and Find Full Text PDF

Simultaneous Concentration and T Mapping of Brain Metabolites by Fast Multi-Echo Spectroscopic Imaging.

NMR Biomed

February 2025

MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland.

The purpose of this study was to produce metabolite-specific T and concentration maps in a clinically compatible time frame. A multi-TE 2D MR spectroscopic imaging (MRSI) experiment (multi-echo single-shot MRSI [MESS-MRSI]) deployed truncated and partially sampled multi-echo trains from single scans and was combined with simultaneous multiparametric model fitting. It was tested in vivo for the brain in five healthy subjects.

View Article and Find Full Text PDF

Correction: Harper et al. Alberta Childhood Cancer Survivorship Research Program. 2023, , 3932.

Cancers (Basel)

December 2024

Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, AB T2S 3C3, Canada.

[...

View Article and Find Full Text PDF

Survivors of childhood cancer face reduced fertility, which can be a significant cause for concern. Our study aimed to assess the prevalence of fertility-related concerns and identify associated factors. Self-report data were collected with the Long-Term Survivor Questionnaire at the Alberta Children's Hospital's Long-Term Survivor Clinic (LTSC) between January 2021 and September 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!