Purpose: Multiple cell types secrete exosome-like extracellular vesicles (ELVs) to the extracellular environment. Pathological conditions can produce characteristic changes to the vesicle cargo. We investigated if ionizing radiation is capable of inducing changes in the protein and microRNA (miRNA) cargo of ELVs.

Materials And Methods: Whole blood samples from healthy donors were irradiated with 2 Gy gamma rays and then peripheral blood mononuclear cells and plasma were separated from residual blood and co-cultivated for 24 h. The released ELVs were collected by differential ultracentrifugation from irradiated and non-irradiated samples. microRNAs and proteins were quantified by qPCR and label-free proteomics.

Results: Here we report a first characterization of radiation-induced changes in the protein and miRNA cargo of ELVs isolated from plasma. Proteome analysis of ELVs identified 214 proteins, of which nine significantly changed their abundance after irradiation. The radiation-induced down-regulation of afamin and serpine peptidase F1 was confirmed by immunoblotting. miRNA expression profiling identified 58 different exosomal miRNAs, the expression of miR-204-5p, miR-92a-3p and miR-31-5p was significantly increased in ELVs from irradiated samples.

Conclusions: This study provides evidence that radiation-induced changes occur in the protein and miRNA cargo of plasma ELVs. These data imply a novel systemic communication pathway between irradiated and non-irradiated cells and tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2017.1294772DOI Listing

Publication Analysis

Top Keywords

mirna cargo
16
changes protein
12
protein mirna
12
cargo plasma
8
ionizing radiation
8
irradiated non-irradiated
8
radiation-induced changes
8
elvs
6
mirna
5
cargo
5

Similar Publications

B cell maturation is crucial for effective adaptive immunity. It requires a complex signalling network to mediate antibody diversification through mutagenesis. B cells also rely on queues from other cells within the germinal centre.

View Article and Find Full Text PDF

Augmented extracellular matrix (ECM) stiffness is a mechanical hallmark of cancer. Mechanotransduction studies have extensively probed the mechanisms by which ECM stiffness regulates intracellular communication. However, the influence of stiffness on intercellular communication aiding tumor progression in three-dimensional microenvironments remains unknown.

View Article and Find Full Text PDF

Oral contraceptives (OCs) are approved for use after onset of menarche, which is well before brain maturation is complete. OC use may induce biochemical changes in the brain, especially during the neurobiologically dynamic adolescent/young adult years. MicroRNA cargo in L1CAM-associated extracellular vesicles was measured from serum samples collected from young women using the miRCURY LNA miRNA Focus PCR Panel (Qiagen) and validated using quantitative PCR.

View Article and Find Full Text PDF

Lung cancer is the primary cause of cancer-related deaths. Most patients are typically diagnosed at advanced stages. Low-dose computed tomography (LDCT) has been proven to reduce lung cancer mortality, but screening programs using LDCT are associated with a high number of false positives and unnecessary thoracotomies.

View Article and Find Full Text PDF

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!