A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Secondary Electron Imaging of Light at the Nanoscale. | LitMetric

Secondary Electron Imaging of Light at the Nanoscale.

ACS Nano

Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.

Published: March 2017

The interaction of fast electrons with metal atoms may lead to optical excitations. This exciting phenomenon forms the basis for the most powerful inspection methods in nanotechnology, such as cathodoluminescence and electron-energy loss spectroscopy. However, direct nanoimaging of light based on electrons is yet to be introduced. Here, we experimentally demonstrate simultaneous excitation and nanoimaging of optical signals using unmodified scanning electron microscope. We use high-energy electron beam for plasmon excitation and rapidly image the optical near fields using the emitted secondary electrons. We analyze dipole nanoantennas coupled with channel nanoplasmonic waveguides and observe both surface plasmons and surface plasmon polaritons with spatial resolution of 25 nm. Our experimental results are confirmed by rigorous numerical calculations based on full-wave solution of Maxwell's equations, showing high correlation between optical near fields and secondary electrons images. This demonstration of optical near-field mapping using direct electron imaging provides essential insights to the exciting relations between electrons plasmons and photons, paving the way toward secondary electron-based plasmon analysis at the nanoscale.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.7b00548DOI Listing

Publication Analysis

Top Keywords

electron imaging
8
optical fields
8
secondary electrons
8
electrons
5
optical
5
secondary
4
secondary electron
4
imaging light
4
light nanoscale
4
nanoscale interaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!