Dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is an emerging biological target with implications in diverse therapeutic areas such as neurological disorders (Down syndrome, in particular), metabolism, and oncology. Harmine, a natural product that selectively inhibits DYRK1A amongst kinases, could serve as a tool compound to better understand the biological processes that arise from DYRK1A inhibition. On the other hand, harmine is also a potent inhibitor of monoamine oxidase A (MAO-A). Using structure-based design, we synthesized a collection of harmine analogues with tunable selectivity toward these two enzymes. Modifications at the 7-position typically decreased affinity for DYRK1A, whereas substitution at the 9-position had a similar effect on MAO-A inhibition but DYRK1A inhibition was maintained. The resulting collection of compounds can help to understand the biological role of DYRK1A and also to assess the interference in the biological effect originating in MAO-A inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.201600539 | DOI Listing |
Expert Opin Drug Discov
January 2025
Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA.
Introduction: Macromolecular X-ray crystallography (XRC), nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryoEM) are the primary techniques for determining atomic-level, three-dimensional structures of macromolecules essential for drug discovery. With advancements in artificial intelligence (AI) and cryoEM, the Protein Data Bank (PDB) is solidifying its role as a key resource for 3D macromolecular structures. These developments underscore the growing need for enhanced quality metrics and robust validation standards for experimental structures.
View Article and Find Full Text PDFMed Res Rev
January 2025
Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China.
Proteins hold pivotal importance since many diseases manifest changes in protein activity. Proteomics techniques provide a comprehensive exploration of protein structure, abundance, and function in biological samples, enabling the holistic characterization of overall changes in organisms. Nowadays, the breadth of emerging methodologies in proteomics is unprecedentedly vast, with constant optimization of technologies in sample processing, data collection, data analysis, and its scope of application is steadily transitioning from the bench to the clinic.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanical Engineering, Liaoning Technical University, Fuxin, 123000, China.
Drums are the core working mechanism of the coal mining machine for coal mining. The structural design level of the drum is crucial for mining efficiency and safety production. Traditional design methods not only have long design cycles and high costs, but also limited design capabilities.
View Article and Find Full Text PDFProteins
January 2025
Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
MPS1 kinase is a dual specificity kinase that plays an important role in the spindle assembly checkpoint mechanism during cell division. Overexpression of MPS1 kinase is reported in several cancers. However, drug discovery and development efforts targeting MPS1 kinase did not result in any clinically successful candidates.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Biochemistry, University of Washington, Seattle, WA 98195, United States. Electronic address:
Cryptosporidium parvum is a protozoan parasite that causes severe diarrheal illness in children and each year nearly 50,000 children under age 5 die due to the disease. Despite tremendous research efforts, there remains a lack of effective therapies and vaccines. Novel inhibitors against N-myristoyltransferase of C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!