A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interactions between Oppositely Charged Polyelectrolytes by Isothermal Titration Calorimetry: Effect of Ionic Strength and Charge Density. | LitMetric

Interactions between Oppositely Charged Polyelectrolytes by Isothermal Titration Calorimetry: Effect of Ionic Strength and Charge Density.

J Phys Chem B

Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier , Place Eugène Bataillon, CC 1706, 34095 Montpellier Cedex 5, France.

Published: March 2017

In this study, binding of linear poly(l-lysine) to a series of acrylamide and 2-acrylamido-2-methyl-1-propanesulfonate copolymers was examined by isothermal titration calorimetry (ITC). Binding constant and stoichiometry were systematically determined at different ionic strengths and for different polyanion charge densities varying between 15% and 100%. The range of investigated ionic strengths was carefully adjusted according to the polyanion charge densities to get measurable binding constants (i.e., formation binding constant typically comprised between 10 and 10 M) by isothermal titration calorimetry (ITC). The number of released counterions during the polyelectrolyte complex formation was determined from the log-log dependence of the binding constant according to the ionic strength and was compared to the total number of condensed counterions estimated from the Manning theory. Experimental results obtained by ITC are in very good agreement with those previously obtained by frontal analysis continuous capillary electrophoresis (FACCE) and can be used to model and predict the binding parameters at any ionic strength or any polyanion charge density. Thermodynamic parameters of the complexation between the oppositely charged polyelectrolytes confirm that the complex formation was entropically driven together with a favorable (but minor) enthalpic contribution. For the first time, specificities, advantages/disadvantages of ITC, and FACCE techniques for studying polyelectrolyte complexations are compared and discussed, using the same experimental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.6b11907DOI Listing

Publication Analysis

Top Keywords

isothermal titration
12
titration calorimetry
12
ionic strength
12
binding constant
12
polyanion charge
12
oppositely charged
8
charged polyelectrolytes
8
charge density
8
calorimetry itc
8
ionic strengths
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!