Chain Folding Produces a Multilayered Morphology in a Precise Polymer: Simulations and Experiments.

J Am Chem Soc

Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Published: March 2017

Precise control over polymer architecture unlocks the potential for engineered self-assembled crystal structures with useful features on the nanometer length scale. Here we elucidate the structure of the ordered phase of a semicrystalline, functional polyethylene having a precise linear architecture, namely, pendant carboxylic acid groups precisely every 21st backbone carbon atom. By comparing the results of atomistic molecular dynamics simulations with experimental X-ray scattering and Raman spectroscopy data, we find that the polymer chains are folded in a hairpin manner near each carboxylic acid group, giving rise to multiple embedded layers of functional groups that have an interlayer distance of 2.5 nm. This is in contrast to other precise polyethylenes, where the chains are mostly trans within the crystals. Such layers could act as two-dimensional pathways for ionic or molecular transport given an appropriate choice of functional group.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b12817DOI Listing

Publication Analysis

Top Keywords

carboxylic acid
8
chain folding
4
folding produces
4
produces multilayered
4
multilayered morphology
4
precise
4
morphology precise
4
precise polymer
4
polymer simulations
4
simulations experiments
4

Similar Publications

Electrochemical reduction for chlorinated hydrocarbons contaminated groundwater remediation: Mechanisms, challenges, and perspectives.

Water Res

January 2025

State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:

Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.

View Article and Find Full Text PDF

Three cases of hemoglobin M disease in a family lineage: Case report and literature review.

Medicine (Baltimore)

January 2025

Department of Pediatric Hematology, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.

Rationale: This study presents a case of hemoglobin M disease (HMD), a rare inherited disorder characterized by persistent cyanosis and hypoxemia, observed across 3 generations within a single family. The diagnosis of HMD poses significant challenges, particularly in asymptomatic individuals, due to its rarity and the subtlety of its symptoms. Notably, there is a scarcity of reports on methemoglobinemia in pediatric populations, which further complicates early detection and intervention.

View Article and Find Full Text PDF

Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.

View Article and Find Full Text PDF

Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light.

View Article and Find Full Text PDF

Previous research indicates that the COVID-19 pandemic catalyzed alterations in behaviors that may impact exposures to environmental endocrine-disrupting chemicals. This includes changes in the use of chemicals found in consumer products, food packaging, and exposure to air pollutants. Within the Environmental influences on Child Health Outcomes (ECHO) program, a national consortium initiated to understand the effects of environmental exposures on child health and development, our objective was to assess whether urinary concentrations of a wide range of potential endocrine-disrupting chemicals varied before and during the pandemic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!