Projection-based quantum embedding methodologies provide a framework for performing wave function-in-density functional theory (WF-in-DFT) calculations. The total WF-in-DFT energy is dependent on the partitioning of the total system and requires similar partitioning in each system for accurate energy differences. To achieve this, we enforce an absolute localization of the WF orbitals to basis functions only associated with the WF subsystem. This absolute localization, followed by iterative optimization of the subsystems' orbitals, provides improved energy differences for WF-in-DFT while simultaneously improving the computational efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.7b00034 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!