A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cytocompatibility of Wood-Derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry. | LitMetric

The current study aims to demonstrate the influence of the surface chemistry of wood-derived cellulose nanofibril (CNF) hydrogels on fibroblasts for tissue engineering applications. TEMPO-mediated oxidation or carboxymethylation pretreatments were employed to produce hydrogels with different surface chemistry. This study demonstrates the following: first, the gelation of CNF with cell culture medium and formation of stable hydrogels with improved rheological properties; second, the response of mouse fibroblasts cultured on the surface of the hydrogels or sandwiched within the materials with respect to cytotoxicity, cell attachment, proliferation, morphology, and migration. Indirect cytotoxicity tests showed no toxic effect of either hydrogel. The direct contact with the carboxymethylated hydrogel adversely influenced the morphology of the cells and limited their spreading, while typical morphology and spreading of cells were observed with the TEMPO-oxidized hydrogel. The porous fibrous structure may be a key to cell proliferation and migration in the hydrogels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.6b01911DOI Listing

Publication Analysis

Top Keywords

surface chemistry
12
wood-derived cellulose
8
cellulose nanofibril
8
hydrogels surface
8
hydrogels
6
cytocompatibility wood-derived
4
nanofibril hydrogels
4
surface
4
chemistry current
4
current study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!