Background/aim: This study aimed to evaluate oxidative stress markers of liver tissue in a mouse α-amanitin poisoning model with three different toxin levels.

Materials And Methods: The mice were randomly divided into Group 1 (control), Group 2 (0.2 mg/kg), Group 3 (0.6 mg/kg), and Group 4 (1.0 mg/kg). The toxin was injected intraperitoneally and 48 h of follow-up was performed before sacrifice.

Results: Median superoxide dismutase activities of liver tissue in Groups 3 and 4 were significantly higher than in Group 1 (for both, P = 0.001). The catalase activity in Group 2 was significantly higher, but in Groups 3 and 4 it was significantly lower than in Group 1 (for all, P = 0.001). The glutathione peroxidase activities in Groups 2, 3, and 4 were significantly higher than in Group 1 (P = 0.006, P = 0.001, and P = 0.001, respectively). The malondialdehyde levels of Groups 3 and 4 were significantly higher than Group 1 (P = 0.015 and P = 0.003, respectively). The catalase activity had significant correlations with total antioxidant status and total oxidant status levels (r = 0.935 and r = -0.789, respectively; for both, P < 0.001).

Conclusion: Our findings support a significant role for increased oxidative stress in α-amanitin-induced hepatotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.3906/sag-1503-163DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
group mg/kg
12
groups higher
12
higher group
12
group
9
stress α-amanitin-induced
8
liver tissue
8
mg/kg group
8
group 0001
8
catalase activity
8

Similar Publications

Background & Aims: Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.

View Article and Find Full Text PDF

Gegen Qinlian Decoction inhibits liver ferroptosis in type 2 diabetes mellitus models by targeting Nrf2.

J Ethnopharmacol

December 2024

Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038; Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038. Electronic address:

Ethnopharmacological Relevance: Type 2 diabetes mellitus (T2DM) is a metabolic disease that can lead to complications affecting multiple organs, including the liver. Gegen Qinlian Decoction (GQD) has demonstrated considerable efficacy in the management of T2DM and its complications in accordance with the tenets of modern Chinese medicine. However, the molecular mechanism by which GQD alleviates diabetic liver injury is unclear.

View Article and Find Full Text PDF

Injectable bioresponsive bone adhesive hydrogels inhibit NLRP3 inflammasome on demand to accelerate diabetic fracture healing.

Biomaterials

December 2024

Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Orthopaedic Surgery, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, PR China. Electronic address:

Diabetes is associated with excessive inflammation, which negatively impacts the fracture healing process and delays bone repair. Previously, growing evidence indicated that activation of the nod-like receptor (NLR) family, such as nod-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome induces a vicious cycle of chronic low-grade inflammatory responses in diabetic fracture. Here, we describe the synthesis of a bone adhesive hydrogel that can be locally injected into the fracture site and releases a natural inhibitor of NLRP3 (rutin) in response to pathological cue reactive oxygen species activity (ROS).

View Article and Find Full Text PDF

Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!