Boron doped diamond (BDD) electrodes have exemplary electrochemical properties; however, widespread use of high-quality BDD has previously been limited by material cost and availability. In the present article, we report the use of a BDD paste electrode (BDDPE) coupled with microfluidic paper-based analytical devices (μPADs) to create a low-cost, high-performance electrochemical sensor. The BDDPEs are easy to prepare from a mixture of BDD powder and mineral oil and can be easily stencil-printed into a variety of electrode geometries. We demonstrate the utility and applicability of BDDPEs through measurements of biological species (norepinephrine and serotonin) and heavy metals (Pb and Cd) using μPADs. Compared to traditional carbon paste electrodes (CPE), BDDPEs exhibit a wider potential window, lower capacitive current, and are able to circumvent the fouling of serotonin. These results demonstrate the capability of BDDPEs as point-of-care sensors when coupled with μPADs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.6b05042DOI Listing

Publication Analysis

Top Keywords

boron doped
8
doped diamond
8
paste electrodes
8
microfluidic paper-based
8
paper-based analytical
8
analytical devices
8
diamond paste
4
electrodes microfluidic
4
devices boron
4
bdd
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!