Periodicity of band gaps of chiral α-graphyne nanotubes.

Phys Chem Chem Phys

Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea.

Published: March 2017

Electronic structures of zigzag (n,0), armchair (n,n), and chiral (n,m) α-graphyne nanotubes (αGNTs) with n = 2-7 were investigated using density functional tight binding calculations. Oscillatory behavior of the band gaps with a period of every (n - m) = 3 was found for each tube. According to the periodicity, αGNTs could be classified into three families, and their band gaps were in the increasing order of (n - m) = 3a < 3a + 1 < 3a + 2. Among the three families, αGNTs with (n - m) = 3a became effectively semimetallic when the tube size was larger than approximately 2 nm, while the other families remained semiconducting.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp00137aDOI Listing

Publication Analysis

Top Keywords

band gaps
12
chiral α-graphyne
8
α-graphyne nanotubes
8
three families
8
periodicity band
4
gaps chiral
4
nanotubes electronic
4
electronic structures
4
structures zigzag
4
zigzag armchair
4

Similar Publications

Incommensurately modulated crystals are a rare class of materials that are notoriously difficult to characterize properly. We have synthesized two new incommensurately modulated compounds, RbTaSe and CsTaSe, based on the MQ (M = Nb, Ta; Q = S, Se) unit using high-temperature solid-state synthesis. Using superspace crystallography in combination with second harmonic generation measurements, we confirmed both materials to be noncentrosymmetric, falling into the superspace group 1(αβγ)0, while the basic cell suggests 2/.

View Article and Find Full Text PDF

Designing rare earth borates as UV nonlinear optical crystals exhibiting strong second-harmonic generation responses.

Chem Commun (Camb)

January 2025

Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.

Two new rare earth borate NLO crystals, KNaSrYBO and RbBaLuBO, were successfully designed and synthesized, which feature NLO-active [BO] groups and [Y/LuO] polyhedra. They exhibit notably short UV absorption cutoff edges below 200 nm, wide band gaps exceeding 6.2 eV, and strong second-harmonic generation intensities that are comparable to KDP.

View Article and Find Full Text PDF

Reducing Nonradiative Recombination in Halide Perovskites through Appropriate Band Gaps and Heavy Atomic Masses.

J Phys Chem Lett

January 2025

State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Halide perovskite optoelectronic devices achieve high energy conversion efficiencies. However, their efficiency decreases significantly with an increase in temperature. This decline is likely caused by changes in nonradiative recombination and electron-phonon coupling, which remain underexplored.

View Article and Find Full Text PDF

In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.

View Article and Find Full Text PDF

Singular topological edge states in locally resonant metamaterials.

Sci Bull (Beijing)

January 2025

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:

Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!