Understanding the interfacial interaction is of paramount importance for rationally designing carbon nanomaterial-based hybrids with optimal performance for electronics, optoelectronics, sensing, advanced energy conversion and storage. Here, we firstly reveal that both covalent and noncovalent interactions simultaneously exist in carbon nanotube (CNT)/AgPO hybrids by studying systematically the electronic and optical properties to elucidate the mechanism of their enhanced photocatalytic performance. Metallic CNT(9,0) may chemically or physically interact with the AgPO(100) surface depending on its relative orientations, whereas semiconducting CNT(10,0) can only noncovalently functionalize AgPO. The C-Ag bond in the covalently bonded hybrid and type-II, staggered, band alignment in noncovalent hybrids lead to a robust separation of photoexcited charge carriers between two constituents, thus enhancing the photocatalytic activity. The small band gap makes the CNT/AgPO hybrids absorb sunlight from the ultraviolet to infrared region. Moreover, CNTs are not only effective sensitizers, but also highly active co-catalysts in hybrids. The results can be rationalized by the available experiments, thereby partly resolving a debate on the interpretation of the experimental results, and paving the way for developing highly efficient carbon-based nanophotocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6cp08853h | DOI Listing |
Anal Bioanal Chem
January 2025
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes.
View Article and Find Full Text PDFNat Chem
January 2025
SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, Strasbourg, France.
Molecular spin qubits have the advantages of synthetic flexibility and amenability to be tailored to specific applications. Among them, chromophore-radical systems have emerged as appealing qubit candidates. These systems can be initiated by light to form triplet-radical pairs that can result in the formation of quartet states by spin mixing.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 101408 China. Electronic address:
The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.
View Article and Find Full Text PDFPLoS One
January 2025
Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
Non-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
The Effective Fragment Potential (EFP) method, a polarizable quantum mechanics-based force field for describing non-covalent interactions, is utilized to calculate protein-ligand interactions in seven inactive cyclin-dependent kinase 2-ligand complexes, employing structural data from molecular dynamics simulations to assess dynamic and solvent effects. Our results reveal high correlations between experimental binding affinities and EFP interaction energies across all the structural data considered. Using representative structures found by clustering analysis and excluding water molecules yields the highest correlation (R2 of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!