The histone deacetylase (HDAC) inhibitors have been demonstrated as an emerging class of anticancer drugs. HDACs are involved in regulation of gene expression and in chromatin remodeling, thus indicating valid targets for different types of cancer therapeutics. The pan-deacetylase inhibitor panobinostat (Farydac, LBH589) was developed by Novartis Pharmaceuticals and has been recently approved by the US Food and Drug Administraion (FDA) as a drug to treat multiple myeloma. It is under clinical investigation for a range of haematological and solid tumors worldwide in both oral and intravenous formulations. Panobinostat inhibits tumor cell growth by interacting with acetylation of histones and non-histone proteins as well as various apoptotic, autophagy-mediated targets and various tumorogenesis pathways involved in development of tumors. The optimal combination regimen for pancreatic cancer remains to be fully elucidated with various combination regimens, and should be investigated in clinical trials. This article summarizes the current preclinical and clinical status of panobinostat in pancreatic cancer. Preclinical data suggests that panobinostat has potential inhibitory activity in pancreatic cancer cells by targeting various pathways and factors involved in the development of cancer. Herein, we reviewed the status of mono and combination therapy and the rationale behind the combination therapy undergoing trials, as well as possible future prospective use in the treatment of pancreatic cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315073 | PMC |
http://dx.doi.org/10.1007/s40487-016-0023-1 | DOI Listing |
Cancer Immunol Immunother
January 2025
Oncology Unit, Macerata Hospital, Macerata, Italy.
Introduction: Renal cell carcinoma (RCC) is one of the most common types of urogenital cancer. The introduction of immune-based combinations, including dual immune-checkpoint inhibitors (ICI) or ICI plus tyrosine kinase inhibitors (TKIs), has radically changed the treatment landscape for metastatic RCC, showing varying efficacy across different prognostic groups based on the International Metastatic RCC Database Consortium (IMDC) criteria.
Materials And Methods: This retrospective multicenter study, part of the ARON-1 project, aimed to evaluate the outcomes of favorable-risk metastatic RCC patients treated with immune-based combinations or sunitinib.
Ann Surg Oncol
January 2025
Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
Background: AT-rich interaction domain 4B (ARID4B) is a transcriptional activator that regulates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in prostate cancer. However, the role of ARID4B in hepatocellular carcinoma (HCC) has remained unclear.
Methods: This study included 162 patients who had undergone primary hepatic resection for HCC between 2008 and 2019.
Ann Surg Oncol
January 2025
Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Sunto-Nagaizumi, Shizuoka, Japan.
Cancer Immunol Immunother
January 2025
Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
Introduction: This study aimed to evaluate the safety and preliminary efficacy of serplulimab, a novel programmed death-1 inhibitor, with or without bevacizumab biosimilar HLX04 as first-line treatment in patients with advanced hepatocellular carcinoma.
Methods: This open-label, multicenter phase 2 study (clinicaltrials.gov identifier NCT03973112) was conducted in China and consisted of four treatment groups: group A (serplulimab 3 mg/kg plus HLX04 5 mg/kg, subsequent-line), group B (serplulimab 3 mg/kg plus HLX04 10 mg/kg, subsequent-line), group C (serplulimab 3 mg/kg, subsequent-line) and group D (serplulimab 3 mg/kg plus HLX04 10 mg/kg, first-line).
Cancer Immunol Immunother
January 2025
National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China.
Although promising, dendritic cell (DC) vaccines may not suffice to fully inhibit tumor progression alone, mainly due to the short expression time of the antigen in DC vaccines, immunosuppressive tumor microenvironment, and tumor antigenic modulation. Overcoming the limitations of DC vaccines is expected to further enhance their anti-tumor effects. In this study, we constructed a circRNA-loaded DC vaccine utilizing the inherent stability of circular RNA to enhance the expression level and duration of the antigen within the DC vaccine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!