Chemically modified calmodulins have been used to investigate structural features which are important for the interaction of the activator with targets. Carbamoylation of lysine residues had no influence on the ability of calmodulin to stimulate the plasma membrane Ca2+-ATPase whereas the stimulation of the bovine brain cyclic-nucleotide phosphodiesterase was reduced up to 50%. Different species of carbamoylated calmodulin have been isolated but no differences were detected in their interaction with the cyclic-nucleotide phosphodiesterase. Modification of arginine residues by 1,2-cyclohexanedione had no effect of the stimulation of the phosphodiesterase but reduced by 40% the stimulation of the erythrocyte Ca2+ ATPase. Mild oxidation of methionines by N-chlorosuccinimide produced a number of differently modified calmodulins. The different species have been purified and the modified residues have been identified. They affected the two different test enzymes to different extents indicating that methionines in the central helix of calmodulin are of greater importance for the interaction with the phosphodiesterase, whereas methionines located in the C-terminal half of calmodulin are more important for the interaction with the Ca2+-ATPase.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1987.tb13664.xDOI Listing

Publication Analysis

Top Keywords

stimulation erythrocyte
8
bovine brain
8
chemically modified
8
modified calmodulins
8
cyclic-nucleotide phosphodiesterase
8
phosphodiesterase reduced
8
phosphodiesterase
5
calmodulin
5
stimulation
4
erythrocyte ca2+-atpase
4

Similar Publications

Background: A number of immunotherapeutic approaches have been developed and are entering the clinic. Bispecific antibodies (BsAbs) are one of these modalities and induce robust efficacy by endogenous T cells in several hematological malignancies. However, most of the treated patients experience only a temporary benefit.

View Article and Find Full Text PDF

Zeatin Elicits Premature Erythrocyte Senescence Through Calcium and Oxidative Stress Mediated by the NOS/PKC/CK1α Signaling Axis.

Dose Response

January 2025

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.

Cytokinins are plant hormones that regulate cell growth and differentiation. In particular, zeatin (ZTN) delays cellular senescence of human fibroblasts and keratinocytes and exhibits anticancer activity. Chemotherapy-induced anemia is a major side effect of anticancer therapy secondary to premature senescence of red blood cells (RBCs).

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Single-cell sequencing of lineage negative (Lin-) cells from patients with myelodysplastic syndromes (MDS) revealed a reduction in ferritin heavy chain 1 (FTH1) levels, yet the significance of this decrease in FTH1 in the pathophysiology of MDS remains unclear. In this study, we evaluated the role of FTH1 in patients with MDS. The mRNA expression of FTH1 in GlycoA nucleated erythrocytes from MDS patients was significantly lower than that in control group.

View Article and Find Full Text PDF

Background: Patients with transfusion-dependent thalassemia experience iron dysregulation, which affects the immune response. Surface proteins such as FcγRIII (CD16), lipopolysaccharide receptor (CD14), and human leukocyte antigen (HLA-DR) on monocytes are crucial for innate and adaptive responses. Blood monocytes, identified by their CD14 and CD16 expression, show functional diversity during injury or inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!