Marine Sponge-Derived sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation.

Front Microbiol

Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of WürzburgWürzburg, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Minia UniversityMinia, Egypt.

Published: February 2017

and are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of , and Results from biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other and strains tested but had no inhibitory effects towards biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to absence of cell toxicity, the extract might represent a good starting material to develop a future remedy to block staphylococcal biofilm formation on contact lenses and thereby to prevent intractable contact lens-mediated ocular infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5311426PMC
http://dx.doi.org/10.3389/fmicb.2017.00236DOI Listing

Publication Analysis

Top Keywords

biofilm formation
24
staphylococcal biofilm
16
sbt343 extract
12
marine sponge-derived
8
extract
8
inhibits staphylococcal
8
contact lenses
8
formation strains
8
formation
7
biofilm
6

Similar Publications

Biofilm formation by the plant growth promoting bacterium Bacillus cereus (EB-40).

Braz J Microbiol

January 2025

Programa de Pós-Graduação em Produção Vegetal no Semiárido, Universidade Estadual de Montes Claros, Rua Reinaldo Viana, 2650, Janaúba, MG, 39400-000, Brazil.

The objective of this work was to investigate the biofilm production capacity of the isolate EB-40 (Bacillus cereus) in a culture medium for the multiplication of microorganisms and in roots of in vitro grown banana explants. It was observed that the isolate was able to produce biofilms in tryptone, soy and agar (TSA) culture medium and in the roots of explants. The format, architecture and location of the biofilms in TSA culture medium presented an exopolymer matrix formed by EB-40 presented coccoid bacillary cells and fibrillar structures.

View Article and Find Full Text PDF

The high-osmolarity glycerol (HOG) pathway in .

mBio

January 2025

University of Angers, Brest University, IRF, SFR ICAT, Angers, France.

The emerging fungal pathogen is known for its strong skin tropism and resilience against antifungal and disinfection treatment, posing a significant challenge for healthcare units. Although efforts to identify the effectors of its unique pathogenic behavior have been insightful, the role of the high-osmolarity glycerol (HOG) pathway in this context remains unexplored. The study by Shivarathri and co-workers (R.

View Article and Find Full Text PDF

Quorum sensing controls numerous processes ranging from the production of virulence factors to biofilm formation. Biofilms, communities of bacteria that are attached to one another and/or a surface, are common in nature, and when they form, they can produce a quorum of bacteria. One model system to study biofilms is the bacterium , which forms a biofilm that promotes the colonization of its symbiotic host.

View Article and Find Full Text PDF

Candida auris is an emerging, multidrug-resistant fungus that poses a threat in health care settings because of its persistence on surfaces and ability to cause severe infections, particularly in immunocompromised patients. First identified in Japan in 2009, C auris has since spread globally, leading to numerous outbreaks. Its unique virulence factors, such as biofilm formation and immune evasion, contribute to its resilience and resistance to eradication.

View Article and Find Full Text PDF

Antifungal activity of 2-adamantylamine hydrochloride on and .

J Med Microbiol

January 2025

Department of Stem Cell and Regenerative Medicine, Medical Biotechnology, Centre for Interdisciplinary Research, D.Y. Patil Education Society (Deemed to be University), Kolhapur- 416-003, Maharashtra, India.

Increased virulence and drug resistance in species of resulted in reduced disease control and further demand the development of potent antifungal drugs. The repurposing of non-antifungal drugs and combination therapy has become an attractive alternative to counter the emerging drug resistance and toxicity of existing antifungal drugs against and non-albicans species. This study aimed to accelerate antifungal drug development process by drug repurposing approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!