Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of the dynamic interplay between reward, dopamine, and associative memory formation. Our results also underline the importance of considering individual traits when assessing reward-related influences on memory.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309218 | PMC |
http://dx.doi.org/10.3389/fnhum.2017.00056 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Geography, Hong Kong Baptist University, Hong Kong SAR, China.
Land use changes profoundly affect hydrological processes and water quality at various scales, necessitating a comprehensive understanding of sustainable water resource management. This paper investigates the implications of land use alterations in the Gap-Cheon watershed, analyzing data from 2012 and 2022 and predicting changes up to 2052 using the Future Land Use Simulation (FLUS) model. The study employs the Hydrological Simulation Program-FORTRAN (HSPF) model to assess water quantity and quality dynamics.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Computer Science and Engineering, Sathyabama Institute of Science and Technology, Shollinganallur, Chennai, India.
Municipal waste classification is significant for effective recycling and waste management processes that involve the classification of diverse municipal waste materials such as paper, glass, plastic, and organic matter using diverse techniques. Yet, this municipal waste classification process faces several challenges, such as high computational complexity, more time consumption, and high variability in the appearance of waste caused by variations in color, type, and degradation level, which makes an inaccurate waste classification process. To overcome these challenges, this research proposes a novel Channel and Spatial Attention-Based Multiblock Convolutional Network for accurately classifying municipal waste that utilizes a unique attention mechanism for enhancing feature learning and waste classification accuracy.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology, Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
Objectives: Forensic age estimation from orthopantomograms (OPGs) can be performed more quickly and accurately using convolutional neural networks (CNNs), making them an ideal extension to standard forensic age estimation methods. This study evaluates improvements in forensic age prediction for children, adolescents, and young adults by training a custom CNN from a previous study, using a larger, diverse dataset with a focus on dental growth features.
Methods: 21,814 OPGs from 13,766 individuals aged 1 to under 25 years were utilized.
Br J Hosp Med (Lond)
January 2025
Speech and Language Rehabilitation Department, Beijing Rehabilitation Hospital Affiliated with Capital Medical University, Beijing, China.
The background for establishing and verifying a dehydration prediction model for elderly patients with post-stroke dysphagia (PSD) based on General Utility for Latent Process (GULP) is as follows: For elderly patients with PSD, GULP technology is utilized to build a dehydration prediction model. This aims to improve the accuracy of dehydration risk assessment and provide clinical intervention, thereby offering a scientific basis and enhancing patient prognosis. This research highlights the innovative application of GULP technology in constructing complex medical prediction models and addresses the special health needs of elderly stroke patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!