Cellular Regulation of Amyloid Formation in Aging and Disease.

Front Neurosci

European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen Groningen, Netherlands.

Published: February 2017

As the population is aging, the incidence of age-related neurodegenerative diseases, such as Alzheimer and Parkinson disease, is growing. The pathology of neurodegenerative diseases is characterized by the presence of protein aggregates of disease specific proteins in the brain of patients. Under certain conditions these disease proteins can undergo structural rearrangements resulting in misfolded proteins that can lead to the formation of aggregates with a fibrillar amyloid-like structure. Cells have different mechanisms to deal with this protein aggregation, where the molecular chaperone machinery constitutes the first line of defense against misfolded proteins. Proteins that cannot be refolded are subjected to degradation and compartmentalization processes. Amyloid formation has traditionally been described as responsible for the proteotoxicity associated with different neurodegenerative disorders. Several mechanisms have been suggested to explain such toxicity, including the sequestration of key proteins and the overload of the protein quality control system. Here, we review different aspects of the involvement of amyloid-forming proteins in disease, mechanisms of toxicity, structural features, and biological functions of amyloids, as well as the cellular mechanisms that modulate and regulate protein aggregation, including the presence of enhancers and suppressors of aggregation, and how aging impacts the functioning of these mechanisms, with special attention to the molecular chaperones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5306383PMC
http://dx.doi.org/10.3389/fnins.2017.00064DOI Listing

Publication Analysis

Top Keywords

amyloid formation
8
neurodegenerative diseases
8
misfolded proteins
8
protein aggregation
8
proteins
7
disease
5
mechanisms
5
cellular regulation
4
regulation amyloid
4
formation aging
4

Similar Publications

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

In vitro and animal studies have suggested that inoculation with herpes simplex virus 1 (HSV-1) can lead to amyloid deposits, hyperphosphorylation of tau, and/or neuronal loss. Here, we studied the association between HSV-1 and Alzheimer's disease biomarkers in humans. Our sample included 182 participants at risk of cognitive decline from the Multidomain Alzheimer Preventive Trial who had HSV-1 plasma serology and an amyloid PET scan.

View Article and Find Full Text PDF

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

Experimental objectives were to create a chronic inflammatory model to evaluate the effects of persistent immune activation on metabolism, inflammation, and productivity in lactating dairy cows. Twelve lactating Holstein cows (631 ± 16 kg BW; 124 ± 15 DIM) were enrolled in a study with 2 experimental periods (P); during P1 (5 d), cows were fed ad libitum and baseline data were obtained. At the initiation of P2 (7 d), cows were assigned to 1 of 2 treatments: 1) saline-infused and pair-fed (PF; 5 mL intravenously (IV) sterile saline on d 1, 3, and 5; n = 6) or 2) lipopolysaccharide infused and ad libitum-fed (LPS; 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!