Several km-scale gravitational-wave detectors have been constructed worldwide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review, we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315762 | PMC |
http://dx.doi.org/10.1007/s41114-016-0002-8 | DOI Listing |
Data Brief
December 2024
Centro Universitário FEI, Avenida Humber de Alencar Castelo Branco, 3972, São Bernardo do Campo, 09850-901 São Paulo, Brazil.
The Ti6Al4V alloy is widely recognized for its extensive industrial applications, particularly in the aeronautics sector, due to its exceptional strength to-weight ratio and corrosion resistance. In this context, many industrial processes depend critically on surface area, topology, and roughness. A promising approach involves combining Ti6Al4V alloy with polymer composites, which offers significant potential for engineers to design parts that are not only high-performing but also environmentally friendly.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
CAEN, Viareggio, Italy.
We provide a technical description and experimental results of the practical development and offline testing of an innovative, closed-loop, adaptive mirror system capable of making rapid, precise and ultra-stable changes in the size and shape of reflected X-ray beams generated at synchrotron light and free-electron laser facilities. The optical surface of a piezoelectric bimorph deformable mirror is continuously monitored at 20 kHz by an array of interferometric sensors. This matrix of height data is autonomously converted into voltage commands that are sent at 1 Hz to the piezo actuators to modify the shape of the mirror optical surface.
View Article and Find Full Text PDFThis article covers the in-vessel design of the SPARC interferometry diagnostic system, highlighting unique aspects of the systems design and port plug integration in preparation for "day-1" plasma operations as a critical diagnostic for density feedback control. An early decision for the diagnostic was to deploy two lasers in the infrared wavelength spectrum, allowing the system to have a higher optical throughput. The optimization of the in-vessel geometry for the diagnostic follows a similar approach, focusing on de-risking possible damage to the plasma facing optical components by moving them further from the plasma with an orientation that provides a greater possibility for protective features to be added.
View Article and Find Full Text PDFPhotoacoustics
October 2024
Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access-system, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
A proof-of-concept on-beam tuning-fork-enhanced photoacoustic sensor based on an open-closed single-tube acoustic-microresonator (AmR) was proposed and investigated for the first time, to the best of our knowledge. Due to the high acoustic amplification effect, the open-closed AmR improved the detection sensitivity by 54 times with respect to the bare tuning fork (TF). Compared to traditional dual-tube/single-tube on-beam spectrophone configuration, the developed approach significantly facilitates the laser beam alignment and reduces the sensor size and gas consumption.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China.
An all-fiber vibration sensor based on the Fabry-Perot interferometer (FPI) is proposed and experimentally evaluated in this study. The sensor is fabricated by introducing a Fabry-Perot cavity to the single-mode fiber using femtosecond laser ablation. The cavity and the tail act together as a cantilever beam, which can be used as a vibration receiver.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!