The signal transducer and activator of transcription 3 (STAT3) plays a critical role in platelet functions. This study sought to understand the effects of the STAT3 inhibitor SC99 on platelet activation and aggregation. Immunoblotting assays were applied to measure the effects of SC99 on the STAT3 signaling pathway. A ChronoLog aggregometer was used to evaluate platelet aggregation. A flow cytometer was used to evaluate P-selectin expression in the presence of SC99. AlamarBlue and Annexin-V staining were used to evaluate platelet viability and apoptosis, respectively. A fluorescence microscope was applied to analyze platelet spreading. SC99 inhibited the phosphorylation of JAK2 and STAT3 in human platelets but had no effects on the phosphorylation of AKT, p65 or Src, all of which are involved in platelet activation. Further studies revealed that SC99 inhibited human platelet aggregation induced by collagen and thrombin in a dose-dependent manner. SC99 inhibited thrombin-induced P-selectin expression and fibrinogen binding to single platelets. Moreover, SC99 inhibited platelet spreading on fibrinogen and clot retraction mediated by outside-in signaling. SC99 inhibited platelet aggregation in mice but it did not significantly prolong the bleeding time. Taken together, the present study revealed that SC99 inhibited platelet activation and aggregation as a STAT3 inhibitor. This agent can be developed as a promising treatment for thrombotic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5457693 | PMC |
http://dx.doi.org/10.1038/aps.2016.155 | DOI Listing |
Front Neurosci
March 2021
Department of Neurology, Hebei PetroChina Central Hospital, Langfang, China.
Objectives: Astragaloside IV (AS-IV), the main active component of Astragalus membranaceus, bears anti-inflammatory, antioxidant, and neuroprotective activity. Parkinson's disease (PD) is a common neurodegenerative disease. This study explored the protective effect of AS-IV on the cell model of PD.
View Article and Find Full Text PDFNeurosci Res
May 2019
Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu Province, 215006, China.
Inhibition of Janus kinases 2-Signal transducers and activators of transcription3 (JAK2-STAT3) pathway has been shown to exert anti-inflammatory actions. SC99, a novel specific inhibitor targeting JAK2-STAT3 pathway, has been verified to negatively modulate platelet activation and aggregation in vitro. In current study, a middle cerebral artery occlusion and reperfusion (MCAO/R) model was established in Sprague Dawley rats and primary cultured microglia was exposed to oxygen and glucose deprivation (OGD/R) in vitro.
View Article and Find Full Text PDFActa Pharmacol Sin
May 2017
Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
The signal transducer and activator of transcription 3 (STAT3) plays a critical role in platelet functions. This study sought to understand the effects of the STAT3 inhibitor SC99 on platelet activation and aggregation. Immunoblotting assays were applied to measure the effects of SC99 on the STAT3 signaling pathway.
View Article and Find Full Text PDFOncotarget
February 2016
Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
The oncogenic STAT3 signaling pathway is emerging as a promising target for the treatment of multiple myeloma (MM). In the present study, we identified a novel STAT3 inhibitor SC99 in a target-based high throughput screen. SC99 inhibited JAK2-STAT3 activation but had no effects on other transcription factors such as NF-κB, and kinases such as AKT, ERK, and c-Src that are in association with STAT3 signaling pathway.
View Article and Find Full Text PDFGenes Dev
November 1987
Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany 12201.
A collection of 100 td mutants defective in phage T4 thymidylate synthase (TS) production was screened for splicing impairments. Splicing-defective mutants were identified by a rapid assay developed to detect imbalances in the td protein products (TS, the exon ligation product, and NH2TS, encoded by the pre-mRNA). Thirteen selected mutants, confirmed to be splicing defective by an RNA-oligodeoxynucleotide hybridization assay, were all shown to be inhibited in the first step of the group I splicing pathway, cleavage at the 5' splice site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!