Biomarkers of exposure can be used to identify specific contaminants that are adversely affecting aquatic organisms. However, it remains prohibitively costly to investigate multiple novel biomarkers of exposure in a non-model species, despite the development of next-generation sequencing technology. In this study, we focused on the use of cDNA-amplified fragment length polymorphism (AFLP) as a cost-effective biomarker discovery tool to test whether it could identify biomarkers of exposure in the non-model amphipod species Grandidierella japonica. Loci were identified that were differentially expressed in amphipods exposed to reference chemicals (Cu, Zn, and nicotine) and to an environmental sample (road dust) at sublethal concentrations. Eight loci were shown to respond consistently to nicotine at different concentrations, but not to Cu or Zn. Some of the loci also responded to an environmental road dust sample containing nicotine. These findings suggest that loci identified using cDNA-AFLP could be used as biomarkers of nicotine exposure in environmental samples with complex matrices. Further studies with other organisms and toxicants are needed, but we have demonstrated that the use of cDNA-AFLP to identify biomarkers for ecotoxicological studies of non-model species is at least feasible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2017.02.037 | DOI Listing |
Ecol Evol
January 2025
Molecular Ecology and Evolution Programme, Department of Biochemistry, Genetics and Microbiology University of Pretoria Pretoria South Africa.
The reduced cost of next-generation sequencing (NGS) has allowed researchers to generate nuclear and mitochondrial genome data to gain deeper insights into the phylogeography, evolutionary history and biology of non-model species. While the Cape buffalo () has been well-studied across its range with traditional genetic markers over the last 25 years, researchers are building on this knowledge by generating whole genome, population-level data sets to improve understanding of the genetic composition and evolutionary history of the species. Using publicly available NGS data, we assembled 40 Cape buffalo mitochondrial genomes (mitogenomes) from four protected areas in South Africa, expanding the geographical range and almost doubling the number of mitogenomes available for this species.
View Article and Find Full Text PDFGenetics
January 2025
Max Planck Research Group Behavioural Genomics, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.
Multiple methods of demography inference are based on the ancestral recombination graph. This powerful approach uses observed mutations to model local genealogies changing along chromosomes by historical recombination events. However, inference of underlying genealogies is difficult in regions with high recombination rate relative to mutation rate due to the lack of mutations representing genealogies.
View Article and Find Full Text PDFImmunogenetics
January 2025
School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.
Characterising functional diversity is a vital element to understanding a species' immune function, yet many immunogenetic studies in non-model organisms tend to focus on only one or two gene families such as the major histocompatibility complex (MHC) or toll-like receptors (TLR). Another interesting component of the eukaryotic innate immune system is the antimicrobial peptides (AMPs). The two major groups of mammalian AMPs are cathelicidins and defensins, with the former having undergone species-specific expansions in marsupials.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2024
Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Paseo Prado de la Magdalena 3-5, 47011 Valladolid, Spain.
CRISPR/Cas systems have emerged as valuable tools to approach the problem of antimicrobial resistance by either sensitizing or lysing resistant bacteria or by aiding in antibiotic development, with successful applications across diverse organisms, including bacteria and fungi. CRISPR/Cas systems can target plasmids or the bacterial chromosome of AMR-bacteria, and it is especially necessary to have an efficient entry into the target cells, which can be achieved through nanoparticles or bacteriophages. Regarding antibiotic development and production, though the use of CRISPR/Cas in this field is still modest, there is an untapped reservoir of bacterial and fungal natural products, with over 95% yet to be characterized.
View Article and Find Full Text PDFMol Ecol Resour
January 2025
Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
Reduced representation sequencing (RRS) has proven to be a cost-effective solution for sequencing subsets of the genome in non-model species for large-scale studies. However, the targeted nature of RRS approaches commonly introduces large amounts of missing data, leading to reduced statistical power and biased estimates in downstream analyses. Genotype imputation, the statistical inference of missing sites across the genome, is a powerful alternative to overcome the caveats associated with missing sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!