Synthesis and characterization of hollow ZrO(2)TiO(2)/Au spheres as a highly thermal stability nanocatalyst.

J Colloid Interface Sci

School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211189, China.

Published: July 2017

A novel binary-metal-oxide-coated hollow microspheres-titanium dioxide-zirconium dioxide-coated Au nanocatalyst was prepared via a facile hydrothermal synthesis method. SEM, TEM, EDX, FTIR, XRD, UV-vis and XPS analyses were employed to characterize the composition, structure, and morphology of ZrO-TiO hollow spheres. The size of Au nanoparticles was found to be 3-5nm in diameter before being immobilized on the aforementioned mesoporous ZrO-TiO layer and used as catalysts in the reduction of 4-nitrophenol to 4-aminophenol by NaBH. Compared with TiO/Au and ZrO/Au, ZrO-TiO/Au NPs showed a higher catalytic activity because of due to mixed oxide synergistic effect. Besides, the sample gets the highest thermal stability and reactivity at 550°C, after calcining the hollow ZT/Au NPs at 550°C, 300°C and room temperature, respectively. Finally, a possible reaction mechanism was also proposed to explain the reduction of 4-nitrophenol to 4-aminophenol over ZrO-TiO/Au catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.02.052DOI Listing

Publication Analysis

Top Keywords

thermal stability
8
reduction 4-nitrophenol
8
4-nitrophenol 4-aminophenol
8
synthesis characterization
4
hollow
4
characterization hollow
4
hollow zro2tio2/au
4
zro2tio2/au spheres
4
spheres highly
4
highly thermal
4

Similar Publications

The broader use of botanical pesticides has been limited by shorter residual activity on plants, slower onset of action, and higher costs compared with conventional pesticides. These challenges could be overcome by the development of simple, cost-effective, and long-lasting preventive nanocomposites for botanical pesticides. In this study, we successfully developed a low-cost ethyl cellulose (EC)-based delivery system for the botanical pesticide osthole (OST), designed to provide extended preventive protection against infestations.

View Article and Find Full Text PDF

Estimating in vivo power deposition density in thermotherapies based on ultrasound thermal strain imaging.

J Acoust Soc Am

January 2025

Key Laboratory of Modern Acoustics (MOE), School of Physics, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China.

In thermal therapies, accurate estimation of in-tissue power deposition density (PDD) is essential for predicting temperature distributions over time or regularizing temperature imaging. Based on our previous work on ultrasound thermometry, namely, multi-thread thermal strain imaging (MT-TSI), this work develops an in vivo PDD estimation method. Specifically, by combining the TSI model infinitesimal echo strain filter with the bio-heat transfer theory (the Pennes equation), a finite-difference time-domain model is established to allow online extraction of the PDD.

View Article and Find Full Text PDF

Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR.

View Article and Find Full Text PDF

Polyesters featuring a linear topology and in-chain 1,3-cyclobutane rings, synthesized via ring-opening polymerization (ROP) of 2-oxabicyclo[2.1.1]hexan-3-one (4R-BL, R = Bu, Ph) through a coordination-insertion mechanism, display excellent thermal and hydrolytic stability, making them promising candidates for sustainable circular materials.

View Article and Find Full Text PDF

Exploring the noncovalent interaction between β-lactoglobulin and flavonoids under nonthermal process: Characterization, physicochemical properties, and potential for lycopene delivering.

Food Chem X

January 2025

Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.

The poor structure stability and low bioavailability of lycopene (LY) hampers the wide application in food field. Thus, it is crucial to explore novel deliver carrier for LY based on protein-flavonoid complexes. In this study, the noncovalent interaction mechanism between β-lactoglobulin (β-LG) and flavonoids (apigenin (API), luteolin (LUT), myricetin (MY), apigenin-7-O-glucoside, luteolin-7-O-glucoside, and myricetrin) under ultrasound treatment was explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!