A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GSH depletion and consequent AKT inhibition contribute to the Nrf2 knockdown-induced decrease in proliferation in glioblastoma U251 cells. | LitMetric

GSH depletion and consequent AKT inhibition contribute to the Nrf2 knockdown-induced decrease in proliferation in glioblastoma U251 cells.

Oncol Rep

Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China.

Published: April 2017

Nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal transcription regulator that controls the expression of numerous antioxidant and cytoprotective genes, was recently defined as a proto-oncogene. However, the role and mechanism of Nrf2 in glioma pathoetiology remain unclear. In the present study, we first evaluated the expression patterns of Nrf2 in normal human astrocytes and 3 glioblastoma (GBM) cell lines (U251, U87 and A172) and found that all 3 GBM cell lines overexpressed Nrf2, with the highest level observed in the U251 cells. We further assessed the biological effects of Nrf2 in U251 cells by specific knockdown of Nrf2 using lentivirus‑mediated RNA interference. We discovered that Nrf2 deficiency led to a decrease in U251 cell proliferation and caused intracellular redox imbalance [diminished glutathione (GSH) levels and increased reactive oxygen species (ROS) levels]. Both N-acetylcysteine and glutathione monoethyl ester (GMEE) supplementation completely eliminated the increased levels of ROS that were present in the Nrf2‑deficient U251 cells. However, only GMEE supplementation both reversed Nrf2 deficiency-induced cell growth arrest and restored intracellular GSH levels. Moreover, AKT and ERK1/2 signaling were both impaired in the Nrf2-knockdown U251 cells, but GMEE supplementation restored AKT signaling but not ERK1/2 signaling, and blocking AKT signaling with an AKT-specific inhibitor greatly diminished the GMEE-induced Nrf2-deficient cell proliferation. In conclusion, our findings revealed novel functions for Nrf2 in the regulation of redox status and cell proliferation, and that intracellular GSH levels and AKT signaling are required for this process, a new viewpoint by which to comprehend the role and underlying mechanism of Nrf2 in tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2017.5467DOI Listing

Publication Analysis

Top Keywords

u251 cells
20
cell proliferation
12
gsh levels
12
gmee supplementation
12
akt signaling
12
nrf2
11
mechanism nrf2
8
cell lines
8
cells gmee
8
intracellular gsh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!