Protective effects of hydrogen sulfide against angiotensin II-induced endoplasmic reticulum stress in HUVECs.

Mol Med Rep

Department of Cardiology/Cardiac Catheterisation Lab, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China.

Published: April 2017

The inhibitory effects of hydrogen sulfide (H2S) on angiotensin II (AngII)-stimulated human umbilical vein endothelial cell (HUVEC) dysfunction remain to be elucidated. Endoplasmic reticulum (ER) stress has been detected in endothelial dysfunction (ED). The present study aimed to determine whether H2S may exert an inhibitory effect on AngII‑induced ER stress. Using HUVECs as a model system, the present study used western blotting to detect protein expression, intracellular reactive oxygen species (ROS) levels were determined by oxidative conversion of cell permeable DCFH‑DA to fluorescent dichlorofluorescein, CCK‑8 assay was used to investigate the cell viability, methylene blue was used to investigate the CSE activity, TUNEL was used to investigate the cells apoptosis. The present study demonstrated that AngII not only upregulated the expression levels of inducible nitric oxide synthase (iNOS), stimulated ROS production and increased cell apoptosis, but also downregulated the expression levels of phosphorylated‑endothelial nitric oxide synthase, decreased the expression and activity of cystathionine‑c‑lyase (CSE) and decreased cell viability. Furthermore, hydrogen peroxide (H2O2; an exogenous ROS) downregulated the expression and activity of CSE, and had similar effects as AngII, whereas the inhibitory effects of AngII were completely suppressed by N-acetyl-L-cysteine (a ROS scavenger). In addition, AngII induced the expression of glucose‑regulated protein 78 (GRPP78) and C/EBP homologous protein (CHOP), which are markers of ER stress. Conversely, the stimulatory effects of AngII were completely inhibited by sodium hydrosulfide (NaHS; a H2S donor). Treatment with NaHS attenuated ROS production, inhibited CHOP and GRP78 expression, and decreased cell apoptosis. The present study indicated that AngII induced ED via the activation of ER stress in HUVECs. In addition, the effects of AngII on ER stress could be suppressed by H2S.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2017.6238DOI Listing

Publication Analysis

Top Keywords

effects angii
16
effects hydrogen
8
hydrogen sulfide
8
endoplasmic reticulum
8
reticulum stress
8
inhibitory effects
8
er stress huvecs
8
cell viability
8
apoptosis study
8
expression levels
8

Similar Publications

Background And Aim: As a classical formula to invigorate blood circulation, Huoxue Tongluo Qiwei Decoction (HTQD) can effectively treat hypertensive erectile dysfunction (ED), but its exact mechanism of action is not yet clear. The goal of this research was to explore the potential mechanism of HTQD in improving hypertensive erectile dysfunction in rats through transcriptomics, network pharmacology, and associated animal experimentations.

Methods: The HTQD chemical constituents were screened using high-performance liquid chromatography- tandem mass spectrometry (HPLC-MS/MS).

View Article and Find Full Text PDF

Atrial fibrillation (AF) represents the commonly occurring cardiac arrhythmia and the main factor leading to stroke and heart failure. Hydrogen (H2) is a gaseous signaling molecule that has the effects of anti-inflammation and antioxidation. Our study provides evidence that hydrogen decreases susceptibility to AngII-mediated AF together with atrial fibrosis.

View Article and Find Full Text PDF

: Increased sodium chloride (NaCl) intake led to leukocyte activation and impaired vasodilatation via increased oxidative stress in human/animal models. Interestingly, subpressor doses of angiotensin II (AngII) restored endothelium-dependent vascular reactivity, which was impaired in a high-salt (HS) diet in animal models. Therefore, the present study aimed to assess the effects of AngII exposure following high salt (HS) loading on endothelial cells' (ECs') viability, activation, and reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Rupr. is a berry fruit shrub found in the north-western region of China, locally its fruit is consumed as a tea ingredient a part of the daily diet, for treatment of different diseases like eczema, and for cardiovascular care as a traditional remedy. In the current study, an optimized ultrasound-assisted extraction (UAE) method is developed using response surface methodology (RSM) to extract anthocyanins from the fruit.

View Article and Find Full Text PDF

Cardiac remodeling encompasses structural alterations such as hypertrophy, fibrosis, and dilatation, alongside numerous cellular and molecular functional aberrations, constituting a pivotal process in the advancement of heart failure (HF). 4-Hydroxychalcone (4-HCH) is a class of naturally occurring compounds with variable phenolic structures, and has demonstrated the preventive efficacy in hyperaldosteronism, inflammation and renal injury. However, the role of 4-HCH in the regulation of cardiac remodeling remains uncertain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!