The adoptive genetic transfer of T cell receptors (TCRs) has been shown to be overall feasible and offer clinical potential as a treatment for different types of cancer. However, this promising clinical approach is limited by the serious potential consequence that exogenous TCR mispairing with endogenous TCR chains may lead to the risk of self-reactivity. In the present study, domain‑exchange and three‑dimensional modeling strategies were used to create a set of chimeric TCR variants, which were used to exchange the partial or complete constant region of αβTCR with corresponding γδTCR domains. The expression, assembly and function of the chimeric TCR variants were examined in Jurkat T cells and peripheral mononuclear blood cells (PBMCs). Genetically‑encoded chimeras were fused with a pair of fluorescent proteins (ECFP/EYFP) to monitor expression and the pairing between chimeric TCRα chains and TCRβ chains. The fluorescence energy transfer based on confocal laser scanning microscopy showed that the introduction of γδTCR constant sequences into the αβTCR did not result in a global reduction of mispairing with endogenous TCR. However, the TCR harboring the immunoglobulin‑like domain of the γδTCR constant region (i.e., TCR∆IgC), showed a higher expression and preferential pairing, compared with wild‑type (wt)TCR. The function analysis showed that TCR∆IgC exhibited the same levels of interferon-γ production and cytotoxic activity, compared with wtTCR. Furthermore, these modified TCR-transduced T cells retained the classic human leukocyte antigen restriction of the original TCR. The other two chimeric TCRs, had either exchange of the cp+tm+ic domain or exchange of the whole C domain (Fig. 1). Ultimately, exchange of these domains demonstrated defective function in the transduced T cells. Taken together, these findings may provide further understanding of the γδTCR constant domain with implications for the improvement of TCR gene transfer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365024 | PMC |
http://dx.doi.org/10.3892/mmr.2017.6206 | DOI Listing |
J Bras Pneumol
January 2025
. EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.
Objective: The demanding nature and psychosocial burdens of directly observed treatment (DOT) have opened a path to alternative strategies such as video-observed therapy (VOT), which offers comparable treatment outcomes and patient satisfaction while potentially saving time and reducing costs. The objective of this study was to evaluate the perceptions and experiences of patients and health care professionals regarding DOT and other treatment strategies implemented in Portugal.
Methods: Patients with a confirmed diagnosis of tuberculosis, treated at the Vila Nova de Gaia Outpatient Tuberculosis Centre in the last two years, were asked to complete a brief questionnaire, as were health care professionals working in the northern region of Portugal.
PLoS One
January 2025
Institute of Wood Technology, Akita Prefectural University, Noshiro, Akita, Japan.
To mitigate global warming, replacing concrete and steel with timber as the primary construction material for construction projects, such as check dams, is being promoted in Japan and other countries. Timber check dams have more limited installation sites than concrete or steel dams because of installation conditions such as locations less susceptible to debris flows and locations where there is constant running water. However, even when the installation conditions are met, engineers and contractors are reluctant to select timber as a construction material because of its high construction cost.
View Article and Find Full Text PDFPLoS One
January 2025
Division of Biological Sciences, US Fish and Wildlife Southwest Regional Office, Albuquerque, New Mexico, United States of America.
There is growing interest in using deep learning models to automate wildlife detection in aerial imaging surveys to increase efficiency, but human-generated annotations remain necessary for model training. However, even skilled observers may diverge in interpreting aerial imagery of complex environments, which may result in downstream instability of models. In this study, we present a framework for assessing annotation reliability by calculating agreement metrics for individual observers against an aggregated set of annotations generated by clustering multiple observers' observations and selecting the mode classification.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.
We report a Tuning Fork Scanning Electrochemical Cell Microscopy (TF-SECCM) technique for providing morphological and electrochemical information on single redox-active entities. This new operation configuration of SECCM utilizes an electrolyte-filled nanopipette tip mounted onto a tuning fork force sensor to obtain a precise tip-sample distance control and surface morphological mapping capabilities. Redox activities of regions of interest (ROIs) can be investigated by scanning electrode potential by moving the nanopipette to any target regions while maintaining the constant force engagement of the tip with the sample.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Pediatric Otolaryngology, Centre of Postgraduate Medical Education, Warsaw, Poland.
Introduction: Psychogenic hearing loss is often neglected in the differential diagnosis of hearing disorders. In a difficult diagnostic process and treatment of psychogenic hearing loss disorder, the close cooperation of the audiologist, psychologist, patient, and his family is required. The study aimed to improve the knowledge and understanding of psychogenic hearing loss, establish a differential diagnosis in audiological tests in children, determine diagnostic procedures and finally apply adequate therapeutic procedures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!