Pancreatic cancer is a type of cancer, which rapidly develops resistance to chemotherapy. Gemcitabine is the treatment used clinically, however, gemcitabine resistance leads to limited efficacy and patient survival rates of only a few months following diagnosis. The aim of the present study was to investigate the mechanisms underlying gemcitabine resistance in pancreatic cancer and to select targeted agents combined with gemcitabine to promote the treatment of pancreatic cancer. Panc‑1 and ASPC‑1 human pancreatic cancer cells (HPCCs) were used to establish the experimental model, and HPCCs were exposed to gemcitabine of serially increased concentrations to generate gemcitabine‑resistant cells (GR‑HPCCs). The anticancer effect of gemcitabine combined with sclareolide was then assessed. Epithelial to mesenchymal transition (EMT), human equilibrative nucleoside transporter 1 (hENT1) and ribonucleoside diphosphate reductase 1 (RRM1) were detected in the HPCCs and GR‑HPCCs, and the mechanisms were investigated. Sclareolide resensitized the GR‑HPCCs to gemcitabine. The expression levels of hENT1 and RRM1 were lower and higher, respectively, in GR‑HPCCs, compared with HPCCs. Sclareolide upregulated hENT1, downregulated RRM1 and inhibited gemcitabine‑induced EMT through the TWIST1/Slug pathway in the GR‑HPCCs. In addition, sclareolide mediated the NOTCH 1 intracellular cytoplasmic domain (NICD)/glioma‑associated oncogene 1 (Gli1) pathway, which triggered TWIST1/Slug‑hENT1/RRM1 signaling and resensitized GR‑HPCCs to gemcitabine. Finally, sclareolide resensitized GR‑HPCCs to gemcitabine through inducing apoptosis; in vivo, the co‑administraion of sclareolide and gemcitabine effectively suppressed tumor growth. Sclareolide may be a novel agent in combination with gemcitabine for the treatment of gemcitabine‑resistant pancreatic cancer, which resensitizes GR‑HPCCs to gemcitabine through mediating NICD and Gli1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365005PMC
http://dx.doi.org/10.3892/mmr.2017.6182DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
24
gr‑hpccs gemcitabine
16
gemcitabine
12
resensitized gr‑hpccs
12
sclareolide
8
mediating nicd
8
nicd gli1
8
human pancreatic
8
gemcitabine treatment
8
gemcitabine resistance
8

Similar Publications

Introduction: Renal cell carcinoma (RCC) is one of the most common types of urogenital cancer. The introduction of immune-based combinations, including dual immune-checkpoint inhibitors (ICI) or ICI plus tyrosine kinase inhibitors (TKIs), has radically changed the treatment landscape for metastatic RCC, showing varying efficacy across different prognostic groups based on the International Metastatic RCC Database Consortium (IMDC) criteria.

Materials And Methods: This retrospective multicenter study, part of the ARON-1 project, aimed to evaluate the outcomes of favorable-risk metastatic RCC patients treated with immune-based combinations or sunitinib.

View Article and Find Full Text PDF

Background: AT-rich interaction domain 4B (ARID4B) is a transcriptional activator that regulates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in prostate cancer. However, the role of ARID4B in hepatocellular carcinoma (HCC) has remained unclear.

Methods: This study included 162 patients who had undergone primary hepatic resection for HCC between 2008 and 2019.

View Article and Find Full Text PDF

Phase 2 study of serplulimab with the bevacizumab biosimilar HLX04 in the first-line treatment of advanced hepatocellular carcinoma.

Cancer Immunol Immunother

January 2025

Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.

Introduction: This study aimed to evaluate the safety and preliminary efficacy of serplulimab, a novel programmed death-1 inhibitor, with or without bevacizumab biosimilar HLX04 as first-line treatment in patients with advanced hepatocellular carcinoma.

Methods: This open-label, multicenter phase 2 study (clinicaltrials.gov identifier NCT03973112) was conducted in China and consisted of four treatment groups: group A (serplulimab 3 mg/kg plus HLX04 5 mg/kg, subsequent-line), group B (serplulimab 3 mg/kg plus HLX04 10 mg/kg, subsequent-line), group C (serplulimab 3 mg/kg, subsequent-line) and group D (serplulimab 3 mg/kg plus HLX04 10 mg/kg, first-line).

View Article and Find Full Text PDF

CircRNA-loaded DC vaccine in combination with low-dose gemcitabine induced potent anti-tumor immunity in pancreatic cancer model.

Cancer Immunol Immunother

January 2025

National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, China.

Although promising, dendritic cell (DC) vaccines may not suffice to fully inhibit tumor progression alone, mainly due to the short expression time of the antigen in DC vaccines, immunosuppressive tumor microenvironment, and tumor antigenic modulation. Overcoming the limitations of DC vaccines is expected to further enhance their anti-tumor effects. In this study, we constructed a circRNA-loaded DC vaccine utilizing the inherent stability of circular RNA to enhance the expression level and duration of the antigen within the DC vaccine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!