The applicability of off-line multispectral UV imaging in combination with multivariate data analysis was investigated to determine the coating thickness and its distribution on the tablet surface during lab-scale coating. The UV imaging results were compared with the weight gain measured for each individual tablet and the corresponding coating thickness and its distribution measured by terahertz pulsed imaging (TPI). Three different tablet formulations were investigated, 2 of which contained UV-active tablet cores. Three coating formulations were applied: Aquacoat® ECD (a mainly translucent coating) and Eudragit® NE (a turbid coating containing solid particles). It was shown that UV imaging is a fast and nondestructive method to predict individual tablet weight gain as well as coating thickness. The coating thickness distribution profiles determined by UV imaging correlated to the results of the TPI measurements. UV imaging appears to hold a significant potential as a process analytical technology tool for determination of the tablet coating thickness and its distribution resulting from its high measurement speed, high molar absorptivity, and a high scattering coefficient, in addition to relatively low costs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2017.02.016 | DOI Listing |
Pharmaceutics
January 2025
Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.
Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, SI-1000 Ljubljana, Slovenia.
The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Computer Engineering, Weifang University, Weifang 261061, China.
Polymeric dielectrics have garnered significant interest worldwide due to their excellent comprehensive performance. However, developing polymeric dielectric films with high permittivity () and breakdown strength () and low dielectric loss (tan) presents a huge challenge. In this study, amorphous aluminum oxide (AlO, AO) transition interfaces with nanoscale thickness were constructed between titanium oxide (TiO, TO) nanosheets and polyvinylidene fluoride (PVDF) to manufacture composites (PVDF/TO@AO).
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Accident and Emergency, Etlik City Hospital, Ankara 06170, Turkey.
Arterial diseases (ADs) are a significant health problem, with high mortality and morbidity rates. Endovascular interventions, such as balloon angioplasty (BA), bare-metal stents (BMSs), drug-eluting stents (DESs) and drug-coated balloons (DCBs), have made significant progress in their treatments. However, the issue has not been fully resolved, with restenosis remaining a major concern.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iasi, 67 Dimitrie Mangeron Street, 700050 Iasi, Romania.
The high yttria content of a stabilized zirconia (YSZ) (38 wt% YO) coating was deposited by atmospheric plasma spraying (APS) from Metco 207 powders on an Inconel 718 (Ni-based superalloy) substrate. As a metal coating connection, a layer of cermet powder (Ni-20% Al-410NS) was used before the ceramic layer deposition. The electro-chemical corrosion resistance of these materials was tested using Inconel cylinders with a diameter of 10 mm and a thickness of 1 mm, with and without the ceramic layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!