The effect of boundary constraints on finite element modelling of the human pelvis.

Med Eng Phys

Medical and Biological Engineering Research Group, School of Engineering and Computer Science, University of Hull, Hull HU6 7RX, UK.

Published: May 2017

The use of finite element analysis (FEA) to investigate the biomechanics of anatomical systems critically relies on the specification of physiologically representative boundary conditions. The biomechanics of the pelvis has been the specific focus of a number of FEA studies previously, but it is also a key aspect in other investigations of, for example, the hip joint or new design of hip prostheses. In those studies, the pelvis has been modelled in a number of ways with a variety of boundary conditions, ranging from a model of the whole pelvic girdle including soft tissue attachments to a model of an isolated hemi-pelvis. The current study constructed a series of FEA models of the same human pelvis to investigate the sensitivity of the predicted stress distributions to the type of boundary conditions applied, in particular to represent the sacro-iliac joint and pubic symphysis. Varying the method of modelling the sacro-iliac joint did not produce significant variations in the stress distribution, however changes to the modelling of the pubic symphysis were observed to have a greater effect on the results. Over-constraint of the symphysis prevented the bending of the pelvis about the greater sciatic notch, and underestimated high stresses within the ilium. However, permitting medio-lateral translation to mimic widening of the pelvis addressed this problem. These findings underline the importance of applying the appropriate boundary conditions to FEA models, and provide guidance on suitable methods of constraining the pelvis when, for example, scan data has not captured the full pelvic girdle. The results also suggest a valid method for performing hemi-pelvic modelling of cadaveric or archaeological remains which are either damaged or incomplete.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2017.02.001DOI Listing

Publication Analysis

Top Keywords

boundary conditions
16
finite element
8
human pelvis
8
pelvic girdle
8
fea models
8
sacro-iliac joint
8
pubic symphysis
8
pelvis
7
boundary
5
boundary constraints
4

Similar Publications

Characterising patterns of genetic diversity including evidence of local adaptation is relevant for predicting and managing species recovering from overexploitation in the face of climate change. Red abalone (Haliotis rufescens) is a species of conservation concern due to recent declines from overharvesting, disease and climate change, resulting in the closure of commercial and recreational fisheries. Using whole-genome resequencing data from 23 populations spanning their entire range (southern Oregon, USA, to Baja California, MEX) we investigated patterns of population connectivity and genotype-environment associations that would reveal local adaptation across the mosaic of coastal environments that define the California Current System (CCS).

View Article and Find Full Text PDF

This study examines the interplay between humble teacher leadership and student creative process engagement, grounded in Social Exchange Theory and Self-Determination Theory. Additionally, it analyzes the sequential mediating roles of student trust and psychological empowerment, as well as the moderating effect of proactive personality. Data were collected at three time points from 384 participants across Chinese universities and analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM) with Smart PLS 4.

View Article and Find Full Text PDF

Introduction: Extraneural metastases (ENM) from glioblastoma (GBM) remain extremely rare with only a scarce number of cases described in the literature. The lack of cases leads to no consensus on the optimal treatment and follow-up of these patients.

Research Question: Do patient or tumor characteristics describe risk factors for ENM in GBM patients, and is it possible to identify mechanisms of action?

Material And Methods: This study presents a 55-year-old man with diagnosed GBM who was referred to a CT due to reduced general condition and mild back pain which revealed extensive systemic metastases.

View Article and Find Full Text PDF

Accurate Reconstruction of Right Heart Shape and Motion From Cine-MRI for Image-Driven Computational Hemodynamics.

Int J Numer Method Biomed Eng

January 2025

Dipartimento di Scienze Chirurgiche Odontostomatologiche e Materno-Infantili, Università di Verona, Verona, Italy.

Accurate reconstruction of the right heart geometry and motion from time-resolved medical images is crucial for diagnostic enhancement and computational analysis of cardiac blood dynamics. Commonly used segmentation and/or reconstruction techniques, exclusively relying on short-axis cine-MRI, lack precision in critical regions of the right heart, such as the ventricular base and the outflow tract, due to its unique morphology and motion. Furthermore, the reconstruction procedure is time-consuming and necessitates significant manual intervention for generating computational domains.

View Article and Find Full Text PDF

Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!